Skip to main content
Log in

The effect of HNS on the reinforcement of TNT crystal: a molecular simulation study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The effect of crystal modifier 2,2’,4,4’,6,6’-hexanitrostillbene(HNS) on the reinforcement of crystalline 1,3,5-trinitrotoluene (TNT) was investigated by molecular simulation. The intermolecular interactions between HNS and TNT were revealed by quantum chemistry calculations in detail, strong attractive forces were found between HNS and TNT. The solid interface models of TNT/HNS along three crystalline directions were studied, the distance between HNS molecule and TNT system was narrowed after optimization; the mechanical properties were calculated, showing the mechanism of the reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shu YJ, Huo JC (2011) Introduction to explosives. Chemical Industry Press, Beijing

    Google Scholar 

  2. Smith DL, Thorpe BW (1973) J Mater Sci 8:757–759

    Article  CAS  Google Scholar 

  3. Ma Q, Shu YJ, Luo G, Chen L, Zheng BH, Li HR (2012) Toughening and elasticizing route of TNT based melt cast explosives. Chin J Energ Mater 20(5):618–629

    CAS  Google Scholar 

  4. Portnoy S, Livingston NJ (1982) Production of fine-grained cast charges with unoriented crystal structure of TNT or explosive compositions containing TNT. US4360394

  5. Trevino SF, Portnoy S, Choi CS (1979) Effects of HNS on Cast TNT. ARLCD-MR-79001

  6. Parry MA, Thorpe BW (1978) Nucleation and growth of TNT containing HNS. MRL-R-708

  7. Parry MA, Thorpe BW (1979) The effective nucleant during the grain modification of TNT with HNS. MRL-R-748

  8. Cartwright M, Hill CJ (1995) Thermal investigation of the crystallization nucleant formed between HNS and TNT. J Therm Anal 44:1021–1036

    Article  CAS  Google Scholar 

  9. Qian W, Shu YJ (2013) Progress of computer simulation for intermolecular interactions in composite explosive. Chin J Energ Mater 21(5):629–637

    CAS  Google Scholar 

  10. Li JS, Xiao HM, Dong HS (2000) A study on the intermolecular interaction of energetic system-mixtures containing -CNO2 and -NH2 groups. Prop Explos Pyrotech 25(1):26–30

    Article  Google Scholar 

  11. Niu XQ, Zhang JG, Feng XJ, Chen PW, Zhang TL, Wang SY, Zhang SW, Zhou ZN, Yang L (2011) Theoretical investigation on intermolecular interactions between the ingredients TNT and RDX of composition B. Acta Chim Sinica 69(14):1627–1638

    CAS  Google Scholar 

  12. Chen L, Li HR, Xiong Y, Xu RJ, Xu T, Liu XF, Shu YJ (2012) Structure and molecular interaction of methyl-nitroguanidine and hydrazine nitrate eutectics. Chin J Energ Mater 20(5):560–564

    CAS  Google Scholar 

  13. Li HR, Shu YJ, Chen L, Ma Q, Ju XH (2013) Theoretical insights into the nature of intermolecular interactions in TNT/CL-20 cocrystal and its properties. Proceedings of the 16th Seminar on New Trends in Research of Energetic Materials, Pardubice, Czech Republic, 742–753

  14. Li HR, Shu YJ, Gao SJ (2013) Easy methods to study the smart energetic TNT/CL-20 co-crystal. J Mol Model 19(11):4909–4917

    Article  CAS  Google Scholar 

  15. Accelrys Software Inc (2012) Materials Studio Release Notes, Release 6.1. Accelrys Software Inc, San Diego

    Google Scholar 

  16. Carper WR, Davis LP, Extine MW (1982) Molecular structure of 2,4,6-trinitrotoluene. J Phys Chem 86:459

    Article  CAS  Google Scholar 

  17. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  18. Delley B (2000) J Chem Phys 113:7756

    Article  CAS  Google Scholar 

  19. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  20. Qiu L, Xiao H (2009) Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs. J Hazard Mater 164:329–336

    Article  CAS  Google Scholar 

  21. Murray JS, Politzer P (2011) The electrostatic potential: an overview. WIREs Comp Mol Sci 1:153–163

    Article  CAS  Google Scholar 

  22. Sun H (1998) COMPASS: an ab initio forcefield optimized for condensed-phase applications — overview with details on alkane and benzene compounds. J Phys Chem B 102:7338

    Article  CAS  Google Scholar 

  23. Sun H, Ren P, Fried JR (1998) The COMPASS forcefield: parameterization and validation for polyphosphazenes. Comput Theor Polym Sci 8:229

    Article  CAS  Google Scholar 

  24. Rigby D, Sun H, Eichinger BE (1998) Computer simulations of poly (ethylene oxides): forcefield, PVT diagram and cyclization behavior. Polym Int 44:311–330

    Article  Google Scholar 

  25. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Phys Chem 72:2384

    Article  CAS  Google Scholar 

  26. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  27. Verlet L (1967) Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103

    Article  CAS  Google Scholar 

  28. Ewald PP (1921) Die Berechnung optischer und elektrostatischer Gitter potentiale (The calculation of optical and electrostatic lattice potentials). Ann Phys Leipzig 64:253

    Article  Google Scholar 

  29. Karasawa N, Goddard WA (1989) Acceleration of convergence for lattice sums. J Phys Chem 93:7320–7327

    Article  CAS  Google Scholar 

  30. Watt JP, Davies GF, O’Connell RJ (1976) The elastic properties of composite materials. Rev Geophys Space Phys 14:541–563

    Article  CAS  Google Scholar 

  31. Weiner JH (1983) Statistical mechanics of elasticity. Wiley, New York

    Google Scholar 

  32. Beijer FH, Kooijman H, Spek AL, Sijbesma RP, Meijer EW (1998) Self-complementarity achieved through quadruple hydrogen bonding. Angew Chem Int Ed 37(1–2):75–78

    Article  CAS  Google Scholar 

  33. Hunter CA, Sanders JKM (1990) The nature of π-π interactions. J Am Chem Soc 112(14):5525–5534

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of NSAF Fund (Grant No.11076002) and NSFC Fund (Grant No.51373159). The computation resources in the Simulation Center of CAEP are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanjie Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, W., Shu, Y., Li, H. et al. The effect of HNS on the reinforcement of TNT crystal: a molecular simulation study. J Mol Model 20, 2461 (2014). https://doi.org/10.1007/s00894-014-2461-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2461-8

Keywords

Navigation