Skip to main content
Log in

Theoretical predictions of thermodynamic parameters of adsorption of nitrogen containing environmental contaminants on kaolinite

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study thermodynamic parameters of adsorption of nitrogen containing environmental contaminants (NCCs, 2,4,6, trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), 2,4-dinitroanisole (DNAN), and 3-one-1,2,4-triazol-5-one (NTO)) interacting with the tetrahedral and octahedral surfaces of kaolinite were predicted. Adsorption complexes were investigated using a density functional theory and both periodic and cluster approach. The complexes, modeled using the periodic boundary conditions approach, were fully optimized at the BLYP-D2 level to obtain the structures and adsorption energies. The relaxed kaolinite-NCCs structures were used to prepare cluster models to calculate thermodynamic parameters and partition coefficients at the M06-2X-D3 and BLYP-D2 levels from the gas phase. The entropy effect on the Gibbs free energies of adsorption of NCCS on kaolinite was also studied and compared with available experimental data. The results showed that in all calculated models, the NCCs molecules are physisorbed and they favor a parallel orientation toward both kaolinite surfaces. It was found that all calculated NCCs compounds are more stable on the octahedral than on the tetrahedral surface of kaolinite. The Gibbs free energies and partition coefficients were also predicted for interactions of NCCs with Na-kaolinite from aqueous solution. Calculations revealed adsorption of NCCs is effective from the gas phase on both cation free kaolinite surfaces and on Na-kaolinite from aqueous solution at room temperature. Theoretical data were validated against experimental results, and the reasons for small differences between calculated and measured partition coefficients are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Weissmahr KW, Haderlein SB, Schwarzenbach RP, Hany R, Nüesch R (1997) Environ Sci Technol 31:240–247

    Article  CAS  Google Scholar 

  2. Haderlein SB, Schwarzenbach RP (1993) Environ Sci Technol 27:316–326

    Article  CAS  Google Scholar 

  3. Haderlein SB, Weissmahr KW, Schwarzenbach RP (1996) Environ Sci Technol 30:612–622

    Article  CAS  Google Scholar 

  4. Weissmahr KW, Haderlein SB, Schwarzenbach RP (1998) Soil Sci Soc Am J 62:369–378

    Article  CAS  Google Scholar 

  5. Weissmahr KW, Hildenbrand M, Schwarzenbach RP, Haderlein SB (1999) Environ Sci Technol 33:2593–2600

    Article  CAS  Google Scholar 

  6. Boyd SA, Sheng G, Teppen BJ, Johnston CT (2001) Environ Sci Technol 35:4227–4234

    Article  CAS  Google Scholar 

  7. Johnston CT, de Oliveira MF, Teppen BJ, Sheng G, Boyd SA (2001) Environ Sci Technol 35:4767–4772

    Article  CAS  Google Scholar 

  8. Takenawa R, Komori Y, Hayashi S, Kawamata J, Kuroda K (2001) Chem Mater 13:3741–3746

    Article  CAS  Google Scholar 

  9. Michalkova A, Szymczak JJ, Leszczynski J (2005) Struct Chem 16:325–337

    Article  CAS  Google Scholar 

  10. Wang X, Qian P, Song K, Zhang C, Dong J (2013) Comput Theor Chem 1025:16–23

    Article  CAS  Google Scholar 

  11. Gorb L, Gu J, Leszczynska D, Leszczynski J (2000) Phys Chem Chem Phys 2:5007–5012

    Article  CAS  Google Scholar 

  12. Pelmenschikov A, Leszczynski J (1999) J Phys Chem B 103:6886–6890

    Article  CAS  Google Scholar 

  13. Gorb L, Lutchyn R, Zub Y, Leszczynska D, Leszczynski J (2006) J Mol Struc-THEOCHEM 766:151–157

    Article  CAS  Google Scholar 

  14. Newman ACD (1987) Chemistry of clays and clay minerals. Longman, London

  15. Bailey SW (1980) Crystal structures of clay minerals and their X-ray identification. Mineralogical Society, London

  16. Young RA, Hewat AW (1988) Clays Clay Miner 36:225–232

    Article  CAS  Google Scholar 

  17. Alzate LF, Ramos CM, Herna´ndez NM, Herna´ndez SP, Mina N (2006) Vib Spectrosc 42:357–368

    Article  CAS  Google Scholar 

  18. Hurley MM, Paul KW (2009) Environmental fate and transport of energetic materials. In: DoD High Performance Computing Modernization Program Users Group Conference (HPCMP-UGC) IEEE, pp 186−189

  19. Scott AM, Burns EA, Hill FC (2014) J Mol Model 20:2373–2377

    Article  Google Scholar 

  20. Tsendra O, Scott AM, Gorb L, Boese AD, Hill FC, Ilchenko MM, Leszczynska D, Leszczynski J (2014) J Phys Chem 118(6):3023–3034

    CAS  Google Scholar 

  21. Bell AT, Head-Gordon M (2011) Annu Rev Chem Biomol Eng 2:453–477

    Article  CAS  Google Scholar 

  22. Efremenko I, Sheintuch M (2006) Langmuir 22:3614–3621

    Article  CAS  Google Scholar 

  23. Fara D, Kahn I, Maran U, Karelson M, Andersson P (2005) J Chem Inf Model 45:94–105

    Article  Google Scholar 

  24. Kubicki JD (2006) Environ Sci Technol 40:2298–2303

    Article  CAS  Google Scholar 

  25. Michalkova A, Gorb L, Hill F, Leszczynski J (2011) J Phys Chem A 115:2423–2430

    Article  CAS  Google Scholar 

  26. Scott AM, Gorb L, Mobley EA, Hill FC, Leszczynski J (2012) Langmuir 28:13307–13317

    Article  CAS  Google Scholar 

  27. Scott AM, Gorb L, Burns EA, Yashkin SN, Hill FC, Leszczynski J (2014) J Phys Chem C 118(9):4774–4783

    Article  CAS  Google Scholar 

  28. Neder RB, Burghammer M, Grasl TH, Schulz H, Bram A, Fiedler S (1999) Clays Clay Miner 47:487–494

    Article  CAS  Google Scholar 

  29. Kremleva A, Krüger S, Rösch N (2008) Langmuir 24:9515–9524

    Article  CAS  Google Scholar 

  30. Lee SG, Choi JI, Koh W, Jang SS (2013) Appl Clay Sci 71:73–81

    Article  CAS  Google Scholar 

  31. Benco L, Tunega D, Hafner J, Lischka H (2001) Chem Phys Lett 333:479–484

    Article  CAS  Google Scholar 

  32. Benco L, Tunega D, Hafner J, Lischka H (2001) Am Mineral 86:1057–1065

    CAS  Google Scholar 

  33. Benco L, Tunega D, Hafner J, Lischka H (2001) J Phys Chem B 105:10812–10817

    Article  CAS  Google Scholar 

  34. Hutter J (1997) CPMD 3.0. Copyright IBM Corporation 1990 − 1997 and MPI Festkörperforschung, Stuttgart

  35. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  37. Grimme S (2006) J Comp Chem 27:1787–1799

    Article  CAS  Google Scholar 

  38. Goedecker S, Teter M, Hutter J (1996) Phys Rev B 54:1703–1710

    Article  CAS  Google Scholar 

  39. Hartwigsen C, Goedecker S, Hutter J (1998) Phys Rev B 58:3641–3662

    Article  CAS  Google Scholar 

  40. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian Inc, Wallingford

    Google Scholar 

  42. Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382

    Article  Google Scholar 

  43. Grimme S, Antony J, Ehrlich S, Krieg HA (2010) J Chem Phys 132:154104–154122

    Article  Google Scholar 

  44. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  45. Shukla MK, Hill F (2014) J Phys Chem C 118:310–319

    Article  CAS  Google Scholar 

  46. Shukla MK, Hill F (2013) J Phys Chem C 117:13136–13142

    Article  CAS  Google Scholar 

  47. Castro EAS, Martins JBL (2005) Int J Quantum Chem 103:550–556

    Article  CAS  Google Scholar 

  48. Castro EAS, Gargano R, Martins JBL (2012) Int J Quantum Chem 112:2828–2831

    Article  CAS  Google Scholar 

  49. Michalkova A, Robinson TL, Leszczynski J (2011) Phys Chem Chem Phys 13:7862–7881

    Article  CAS  Google Scholar 

  50. Zhanpeisov NU, Adams JW, Larson SL, Weiss CA Jr, Zhanpeisova BZ, Leszczynska D, Leszczynski J (1999) Struct Chem 10:285–294

    Article  CAS  Google Scholar 

  51. Abbasi A, Nadimi E, Plänitz P, Radehaus C (2009) Surf Sci 603:2502–2506

    Article  CAS  Google Scholar 

  52. Piane MD, Corno M, Ugliengo P (2013) J Chem Theory Comput 9:2404–2415

    Article  Google Scholar 

  53. Mian SA, Saha LC, Jang J, Wang L, Gao X, Nagase S (2010) J Phys Chem C 114:20793–20800

    Article  CAS  Google Scholar 

  54. Rimola A, Civalleri B, Ugliengo P (2010) Phys Chem Chem Phys 12:6357–6366

    Article  CAS  Google Scholar 

  55. Rimola A, Sodupe M, Ugliengo P (2009) J Phys Chem C 113:5741–5750

    Article  CAS  Google Scholar 

  56. Van der Mynsbrugge J, Hemelsoet K, Vandichel M, Waroquier M, Van Speybroeck V (2012) J Phys Chem C 116:5499–5508

    Article  Google Scholar 

  57. Flick JC, Kosenkov D, Hohenstein EG, Sherrill CD, Slipchenko LV (2012) J Chem Theory Comput 8:2835–2843

    Article  CAS  Google Scholar 

  58. Kang R, Chen H, Shaik S, Yao J (2011) J Chem Theory Comput 7:4002–4011

    Article  CAS  Google Scholar 

  59. Biswal HS, Gloaguen E, Mons M, Bhattacharyya S, Shirhatti PR, Wategaonkar S (2011) J Phys Chem A 115:9485–9492

    Article  CAS  Google Scholar 

  60. Goerigk L, Kruse H, Grimme S (2011) Chem Phys Chem 12:3421–3433

    CAS  Google Scholar 

  61. He X, Chen S, Quan X, Liu Z, Zhao Y (2009) Chemosphere 77:1427–1433

    Article  CAS  Google Scholar 

  62. Meijer SN, Shoeib M, Jones KC, Harner T (2003) Environ Sci Technol 37:1300–1305

    Article  CAS  Google Scholar 

  63. Scott AM, Dawley MM, Orlando TM, Hill FC, Leszczynski J (2012) J Phys Chem C 116:23992–24005

    Article  Google Scholar 

  64. Aquino AJA, Tunega D, Haberhauer G, Gerzabek MH, Lischka H (2003) J Comput Chem 24:1853–1863

    Article  CAS  Google Scholar 

  65. Clausen P, Andreoni W, Curioni A, Hughes E, Plummer CJG (2009) J Phys Chem C 113:15218–15225

    Article  CAS  Google Scholar 

  66. Mignon P, Ugliengo P, Sodupe M (2009) J Phys Chem C 113:13741–13749

    Article  CAS  Google Scholar 

  67. Denayer JF, Baron GV, Martens JA, Jacobs PA (1998) J Phys Chem B 102:3077–3081

    Article  CAS  Google Scholar 

  68. Ocakoglu RA, Denayer JFM, Marin GB, Martens JA, Baron GV (2003) J Phys Chem B 107:398–406

    Article  CAS  Google Scholar 

  69. Tielens F, Denayer JFM, Daems I, Baron GV, Mortier WJ, Geerlings P (2003) J Phys Chem B 107:11065–11071

    Article  CAS  Google Scholar 

  70. De Moor BA, Reyniers M-F, Gobin OC, Lercher JA, Marin GB (2010) J Phys Chem C 115:1204–1219

    Article  Google Scholar 

  71. Boulard S, Gilot P, Brosius R, Habermacher D, Martens JA (2004) Top Catal 30:49–53

    Article  Google Scholar 

  72. Valenzano L, Civalleri B, Chavan S, Palomino GT, Arean CO, Bordiga S (2010) J Phys Chem C 114:11185–11191

    Article  CAS  Google Scholar 

  73. Sari A, Ipyldak O (2006) Bull Chem Soc Ethiop 20:259–267

    Article  CAS  Google Scholar 

  74. Hobza P, Bludsky O, Suhai S (1999) Phys Chem Chem Phys 1:3073–3078

    Article  CAS  Google Scholar 

  75. Barone V (2005) J Chem Phys 122:014108–014117

    Article  Google Scholar 

  76. Wang W, Pitonak M, Hobza P (2007) Chem Phys Chem 8:2107–2111

    CAS  Google Scholar 

  77. Ayala PY, Schlegel HB (1998) J Chem Phys 108:2314–2325

    Article  CAS  Google Scholar 

  78. Sillar K, Sauer J (2012) J Am Chem Soc 134:18354–18365

    Article  CAS  Google Scholar 

  79. Barone V (2004) J Chem Phys 120:3059–3065

    Article  CAS  Google Scholar 

  80. Ben-Tal N, Honig B, Bagdassarian CK, Ben-Shaul A (2000) Biophys J 79:1180–1187

    Article  CAS  Google Scholar 

  81. Hippelein M, Mclachlan MS (1998) Environ Sci Technol 32:310–316

    Article  CAS  Google Scholar 

  82. Cabrerizo A, Dachs J, Jones KC, Barcel´ D (2011) Atmos Chem Phys 11:12799–12811

    Article  CAS  Google Scholar 

  83. Ribes S, Van Drooge B, Dachs J, Gustafsson Ø, Grimalt JO (2003) Environ Sci Technol 37:2675–2680

    Article  CAS  Google Scholar 

  84. Pichtel J (2012) Appl Environ Soil Sci 2012:1–33

    Article  Google Scholar 

  85. Cattaneo MV, Pennington JC, Brannon JM, Gunnison D, Harrelson DW, Zakikhani M (2000) Natural attenuation of explosives in remediation of hazardous waste contaminated soils. Dekker, New York

  86. Caulfield JA (2008) Analytical studies of sorption phenomena for nitrogen heterocycles. Dissertation, http://digitaldu.coalliance.org/fedora/repository/codu%3A63047/ETD_umi-denver-1018.pdf-0/master

  87. Price CB, Brannon JM, Yost SL, Hayes CA (2000) Adsorption and transformation of explosives in low-carbon aquifer soils. Technical Report, ERDC/EL TR-00-11. U.S. Army Engineer Research and Development Center, Vicksburg, MS

Download references

Acknowledgments

This work was facilitated by support from the High Performance Computing Distributed Shared Resource Center at the ERDC (Vicksburg, MS). The use of trade, product, or firm names in this report is for descriptive purposes only and does not imply endorsement by the U.S. Government. Results in this study were funded and obtained from research conducted under the Environmental Quality Technology Program of the United States Army Corps of Engineers by the US Army ERDC. Permission was granted by the Chief of Engineers to publish this information. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Michalkova Scott.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scott, A.M., Burns, E.A., Lafferty, B.J. et al. Theoretical predictions of thermodynamic parameters of adsorption of nitrogen containing environmental contaminants on kaolinite. J Mol Model 21, 21 (2015). https://doi.org/10.1007/s00894-015-2577-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2577-5

Keywords

Navigation