Skip to main content
Log in

Influence of defect locations and nitrogen doping configurations on the mechanical properties of armchair graphene nanoribbons

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The effect of defect locations on the mechanical properties of armchair graphene nanoribbons (AGNRs) and the various configurations of nitrogen (N) doping on the mechanical properties of AGNRs were examined using molecular dynamics (MD) simulations. The variation of the Young’s modulus (YM) and the ultimate tensile strength (UTS) of pyridinic-N, graphitic-N, and pyrrolic-N by increasing the concentration of N doping was investigated. The results of MD simulations show that the defect location has a significant effect on the UTS and failure strain (FS) of AGNRs in both vertical and horizontal directions. In the horizontal direction, variations of the UTS and FS are lower than in the vertical direction. On the other hand, the variations of the YM is almost similar in vertical and horizontal directions. The results of this work indicate that the UTS and FS of AGNRs are more sensitive than the YM of AGNRs for different defect directions. Pyridinic-N improves the mechanical properties of the defective AGNR and performs better YM and UTS values than the graphitic-N. Substitution N atoms, which are located at the defective sites and/or at the edges of AGNRs, are mechanically more favorable. Pyrrolic-N configuration has the lowest mechanical properties among the other configurations. Furthermore, pyrrolic-N with Stone-Wales-1 (SW-1) type of defect has higher mechanical properties than pyrrolic-N with Stone-Wales-2 (SW-2) type of defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  3. Zhang YB, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 438:201–204

    Article  CAS  Google Scholar 

  4. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  5. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  CAS  Google Scholar 

  6. Williams JR, DiCarlo L, Marcus CM (2007) Quantum hall effect in a gate-controlled p-n junction of graphene. Science 317(5838):638–641

    Article  CAS  Google Scholar 

  7. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907

    Article  CAS  Google Scholar 

  8. Otani T, Whiteside LA, White SE, McCarthy DS (1993) Effects of femoral component material properties on cementless fixation in total hip arthroplasty. J Arthroplast 8(1):67–74

    Article  CAS  Google Scholar 

  9. Ghosh S, Calzio I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92(15):151911

    Article  Google Scholar 

  10. Cai WW, Moore AL, Zhu YW, Li XS, Chen SS, Shi L, Ruoff RS (2010) Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett 10(5):1645–1651

    Article  CAS  Google Scholar 

  11. Boukhvalov DW, Katsnelson MI (2008) Chemical functionalization of graphene with defects. Nano Lett 8(12):4373–4379

    Article  CAS  Google Scholar 

  12. Rutter GM, Crain JN, Guisinger NP, Li T, First PN, Stroscio JA (2007) Scattering and interference in epitaxial graphene. Science 317(5835):219–222

    Article  CAS  Google Scholar 

  13. Sepioni M, Nair RR, Rablen S, Narayanan J, Tuna F, Winpenny R, Geim AK, Grigorieva IV (2010) Limits on intrinsic magnetism in graphene. Phys Rev Lett 105(20):207205

    Article  CAS  Google Scholar 

  14. Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5(1):26–41

    Article  CAS  Google Scholar 

  15. Panchakarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao CNR (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21(46):4726–4730

    CAS  Google Scholar 

  16. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9(5):1752–1758

    Article  CAS  Google Scholar 

  17. Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li W-X, Fu Q, Ma X, Xue Q, Sun G, Bao X (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23(5):1188–1193

    Article  CAS  Google Scholar 

  18. Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z (2011) Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv Mater 23(8):1020–1024

    Article  CAS  Google Scholar 

  19. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798

    Article  CAS  Google Scholar 

  20. Ma FX, Wang J, Wang FB, Xia XH (2015) The room temperature electrochemical synthesis of N-doped graphene and its electrocatalytic activity for oxygen reduction. Chem Commun 51(7):1198–1201

    Article  CAS  Google Scholar 

  21. Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324(5928):768–771

    Article  CAS  Google Scholar 

  22. Wang R, Xu C, Sun J, Gao L (2014) Three-dimensional Fe2O3 nanocubes/nitrogen-doped graphene aerogels: nucleation mechanism and lithium storage properties. Sci Rep 4:7171

    Article  CAS  Google Scholar 

  23. Lv R, Li Q, Botello-Méndez AR, Hayashi T, Wang B, Berkdemir A, Hao Q, Elías AL, Cruz-Silva R, Gutiérrez HR, Kim YA, Muramatsu H, Zhu J, Endo M, Terrones H, Charlier JC, Pan M, Terrones M (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2:586

    Article  Google Scholar 

  24. Zhang Y, Ge J, Wang L, Wang D, Ding F, Tao X, Chen W (2013) Manageable N-doped graphene for high performance oxygen reduction reaction. Sci Rep 3:2771

    Article  Google Scholar 

  25. Wen ZH, Wang XC, Mao S, Bo Z, Kim H, Cui SM, Lu GH, Feng XL, Chen JH (2012) Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv Mater 24(41):5610–5616

    Article  CAS  Google Scholar 

  26. Li X-F, Lian K, Liu L, Luo Y (2016) Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia. Sci Rep 6:23495

    Article  CAS  Google Scholar 

  27. Senturk AE, Oktem AS, Konukman AES (2017) Effects of the nitrogen doping configuration and site on the thermal conductivity of defective armchair graphene nanoribbons. J Mol Model 23:247

    Article  Google Scholar 

  28. Lu YF, Lo S-T, Lin J-C, Zhang W, Lu J-Y, Liu F-H, Tseng C-M, Lee Y-H, Liang C-T, Li L-J (2013) Nitrogen-doped graphene sheets grown by chemical vapor deposition: synthesis and influence of nitrogen impurities on carrier transport. ACS Nano 7(8):6522–6532

    Article  CAS  Google Scholar 

  29. Wu J, Ma L, Yadav RM, Yang Y, Zhang X, Vajtai R, Lou J, Ajayan PM (2015) Nitrogen-doped graphenewith pyridinic dominance as a highly active and stable electrocatalyst for oxygen reduction. ACS Appl Mater Interfaces 7(27):14763–14769

    Article  CAS  Google Scholar 

  30. Zheng B, Cai X-L, Zhou Y, Xia X-H (2016) Pure pyridinic nitrogen doped single-layer graphene catalyzes the two-electron transfer process of oxygen reduction reaction. ChemElectroChem 3(12):2036–2042

    Article  CAS  Google Scholar 

  31. Usachov D, Vilkov O, Grüneis A, Haberer D, Fedorov A, Adamchuk VK, Preobrajenski AB, Dudin P, Barinov A, Oehzelt M, Laubschat C, Vyalikh DV (2011) Nitrogen-doped graphene:efficient growth, structure, and electronic properties. Nano Lett 11(12):5401–5047

    Article  CAS  Google Scholar 

  32. Jalili S, Vaziri R (2011) Study of the electronic properties of Li-intercalated nitrogen doped graphite. Mol Phys 109(5):687–694

    Article  CAS  Google Scholar 

  33. Wang X, Sun G, Routh P, Kim D-H, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43(20):7067–7098

    Article  CAS  Google Scholar 

  34. Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J (2011) Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property. J Mater Chem 21(22):8038–8044

    Article  CAS  Google Scholar 

  35. Lin Y-C, Teng P-Y, Yeh C-H, Koshino M, Chiu P-W, Suenaga K (2015) Structural and chemical dynamics of pyridinic-nitrogen defects in graphene. Nano Lett 15(11):7408–7413

    Article  CAS  Google Scholar 

  36. Ansari R, Ajori S, Motevalli B (2011) Mechanical properties of defective single-layered graphene sheets via molecular dynamics simulation. Superlattice Microst 51(2):274–289

    Article  Google Scholar 

  37. Mortazavi B, Ahzi S (2013) Thermal conductivity and tensile response of defective graphene: a molecular dynamics study. Carbon 63:460–470

    Article  CAS  Google Scholar 

  38. Ansari R, Motevalli B, Montazeri A, Ajori S (2011) Fracture analysis of monolayer graphene sheets with double vacancy defects via MD simulation. Solid State Commun 151(17):1141–1146

    Article  CAS  Google Scholar 

  39. Senturk AE, Oktem AS, Konukman AES (2018) Investigation of the effects of nitrogen doping within different sites of Stone-Wales defects on the mechanical properties of graphene by using a molecular dynamics simulation method. J Fac Eng Archit Gazi Univ (in press)

  40. Dinadayalane TC, Murray JS, Concha MC, Politzer P, Leszczynski J (2010) Reactivities of sites on (5,5) single-walled carbon nanotubes with and without a stone-Wales defect. J Chem Theory Comput 6(4):1351–1357

  41. Yang H, Tang Y, Gong J, Liu Y, Wang X, Zhao Y, Yang P, Wang S (2013) Influence of doped nitrogen and vacancy defects on the thermal conductivity of graphene nanoribbons. J Mol Model 19(11):4781–4788

    Article  CAS  Google Scholar 

  42. Setoodeh AR, Badjian H, Jahromi HS (2017) Atomistic study of mono/multi-atomic vacancy defects on the mechanical characterization of boron-doped graphene sheets. J Mol Model 23:2

    Article  CAS  Google Scholar 

  43. Yang P, Wang X-L, Li P, Wang H, Zhang L-Q, Xie F-W (2012) The effect of doped nitrogen and vacancy on thermal conductivity of graphene nanoribbon from nonequilibrium molecular dynamics. Acta Phys Sin 61(7):076501

    Google Scholar 

  44. Liu D, Yang P, Yuan X, Guo J, Liao N (2015) The defect location effect on thermal conductivity of graphene nanoribbons based on molecular dynamics. Phys Lett A 379(9):810–814

    Article  CAS  Google Scholar 

  45. Accelrys Inc (2017) Materials studio. Accelrys Inc., San Francisco https://accelrys.com

    Google Scholar 

  46. Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9(8):3012–3015

    Article  CAS  Google Scholar 

  47. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  48. Tuckerman ME, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97(3):1990–2001

    Article  CAS  Google Scholar 

  49. Lindsay L, Broido DA (2010) Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys Rev B 81(20):205441

    Article  Google Scholar 

  50. Shenderova OA, Brenner DW, Omeltchenko A, Su X, Yang LH (2000) Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B 61(6):3877

    Article  CAS  Google Scholar 

  51. Tabarraei A, Shadalou S, Song J-H (2015) Mechanical properties of graphene nanoribbons with disordered edges. Comput Mater Sci 96:10–19

    Article  CAS  Google Scholar 

  52. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697

    Article  CAS  Google Scholar 

  53. Chu Y, Ragab T, Basaran C (2014) The size effect in mechanical properties of finite-sized graphene nanoribbon. Comput Mater Sci 81:269–274

    Article  CAS  Google Scholar 

  54. Wang X, Tabakman SM, Dai H (2008) Atomic layer deposition of metal oxides on pristine and functionalized graphene. J Am Chem Soc 130(26):8152–8153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate Dr. Bohayra Mortazavi at Bauhaus University and Dr. Mesut Kırca at Istanbul Technical University for their valuable guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alp Er S. Konukman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senturk, A.E., Oktem, A.S. & Konukman, A.E.S. Influence of defect locations and nitrogen doping configurations on the mechanical properties of armchair graphene nanoribbons. J Mol Model 24, 43 (2018). https://doi.org/10.1007/s00894-018-3581-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3581-3

Keywords

Navigation