Skip to main content
Log in

Evaluierung individueller, in der CAD/CAM-Technik gefertigter Bioverit®-Keramik-Implantate zur Wiederherstellung mehrdimensionaler kraniofazialer Defekte am menschlichen Schädel

Evaluation of individual ceramic implants made of Bioverit with CAD/CAM technology to reconstruct multidimensional craniofacial defects of the human skull

  • Originalien
  • Published:
Mund-, Kiefer- und Gesichtschirurgie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Knöcherne Defizite im Gesichtsschädel verursacht durch Unterentwicklung, Nichtanlage, Traumata oder Tumoren stehen im Mittelpunkt der rekonstruktiven plastischen Mund-, Kiefer- und Gesichtschirurgie. Zur Rekonstruktion von derartigen Defekten sind Verfahren der autologen Transplantation etabliert. Atrophie und Resorption von frei transplantierten Geweben beeinträchtigen die Langzeitergebnisse von konturbildenden Defekten. Auch werden Entnahmemorbiditäten im Spenderareal beschrieben. Als alternative Methode zur alloplastischen Rekonstruktion stehen computerassistierte Planungs- und Fertigungssysteme (CAD/CMD) zur Verfügung. Die individuelle Implantatplanung und Fertigung wirkt sich positiv auf das Behandlungsergebnis aus.

Material und Methode

In der vorliegenden Studie wurde der Einsatz von CAD-gefertigten, individuellen Biokeramikimplantaten aus Bioverit II® im Bereich des Gesichtsschädels evaluiert. Dabei wurden die klinischen Ergebnisse über einen postoperativen Beobachtungszeitraum von 30 Monaten bewertet und die Patientenakzeptanz erfasst.

Ergebnisse

Die Auswertung umfasst 25 patientenspezifische Bioverit-Implantate im Bereich des Gesichtsschädels. Alle Patienten zeigten sich primär mit dem ästhetischen Ergebnis der Operation zufrieden. Bei drei Patienten entwickelte sich im Beobachtungszeitraum der Wunsch nach einer weiteren Korrektur und einmal kam es zur Fraktur des Implantates.

Schlussfolgerung

Zusammenfassend kann festgestellt werden, dass für spezielle Indikationen der präoperativ benötigte zeitliche, materielle und personelle Aufwand zur individuellen CAD/CAM-Planung und Fertigung der Implantate, durch die damit verbundenen Vorteile wie Volumenstabilität, verkürzte Operationszeiten, fehlende Donormorbidität und einfache Bearbeitbarkeit des Materials weitgehend ausgeglichen werden kann.

Abstract

Background

Restrictions in the bone structure of the craniomandibular region caused by malformation, traumata or malignant tumours are currently of interest in reconstructive oral and maxillofacial surgery. Methods of autologous bone transplantation are well established for reconstruction of those defects. The reconstruction and remodeling of contour-shaping defects is more difficult due to atrophy and resorption of free-transplantable tissues. Artificially induced harmful effects have been reported on harvesting in the donor area. Further available methods of alloplastic reconstruction are computer-assisted design and manufacturing systems (CAD/CAM). The advantages of individual design and fabrication are obvious in the manufacturing of defect-specific implants.

Material and methods

In the present study the application of individual CAD-based reconstructed bioceramic implants made of Bioverit II was evaluated in the region of the facial skull. Clinical results, patient acceptance and the analysis of the postoperative observation period of 30  months are reviewed.

Results

Altogether 25 individual Bioverit ceramics were implanted in the facial region. All patients were satisfied with the aesthetic results of the implantations after primary surgery. Three patients developed a need for further correction during the observation period; one implant fracture was observed.

Conclusion

Finally, it can be stated that the preoperative expenditures in time, experts, technology and fabrication of individual CAD/CAM planned and manufactured implants are justified by the following advantages: fixed volume, reduced operating time, lack of donor morbidity, easy subsequent treatment of the material and the aesthetic results achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Beleites E, Neupert G, Augsten G et al. (1985) Scanning electron microscopy study of cell growth on mechanically produced biovitroceramic and carbon glass in vitro and in vivo. Laryngol Rhinol Otol 64: 217–220

    Google Scholar 

  2. Beleites E, Schneider G, Fried W et al. (2001) 3-D-Referenzimplantate für den Gesichts- und Hirnschädel. Dtsch Ärztebl 5: 209–213

    Google Scholar 

  3. Bill JS, Reuther JF (2004) Rapid prototyping in planning reconstructive surgery of the head and neck. Review and evaluation of indications in clinical use. Mund Kiefer GesichtsChir 8: 135–153

    Article  PubMed  Google Scholar 

  4. Blum KS, Schneider SJ, Rosenthal AD (1997) Methyl methacrylate cranioplasty in children: long-term results. Pediatr Neurosurg 26: 33–35

    PubMed  Google Scholar 

  5. Buchman SR, Muraszko K (2002) Frontoorbital reconstruction. Atlas Oral Maxillofac Surg Clin North Am 10: 43–56

    Article  PubMed  Google Scholar 

  6. Chiarini L, Figurelli S, Pollastri G et al. (2004) Cranioplasty using acrylic material: a new technical procedure. J Craniomaxillofac Surg 32: 5–9

    PubMed  Google Scholar 

  7. Daculsi G, Laboux O, Malard O, Weiss P (2003) Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater Med 14: 195–200

    Article  PubMed  Google Scholar 

  8. D’Agostino A, Fior A, Toffanetti G et al. (2004) Maxillary post-traumatic outcome correction. Literature review and personal experience. Minerva Stomatol 53: 315–323

    PubMed  Google Scholar 

  9. El-Ghannam A (2005) Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices 2: 87–101

    Article  PubMed  Google Scholar 

  10. Eufinger H, Machtens E (1997) Reconstruction in craniofacial contour and continuity defects with preoperatively designed individual implants. Mund Kiefer GesichtsChir 1: 129–132

    Google Scholar 

  11. Eufinger H, Wehmöller M (1998) Individual prefabricated titanium implants in reconstructive craniofacial surgery: clinical and technical aspects of the first 22 cases. Plast Reconstr Surg 102: 300–308

    PubMed  Google Scholar 

  12. Eufinger H, Wehmöller M (2002) Microsurgical tissue transfer and individual computer-aided designed and manufactured prefabricated titanium implants for complex craniofacial reconstruction. Scand J Plast Reconstr Surg Hand Surg 36: 326–331

    Article  PubMed  Google Scholar 

  13. Gladilin E, Zachow S, Deuflhard P, Hege HC (2004) Anatomy- and physics-based facial animation for craniofacial surgery simulations. Med Biol Eng Comput 42: 167–170

    Article  PubMed  Google Scholar 

  14. Hennessy RJ, Kinsella A, Waddington JL (2002) 3D laser surface scanning and geometric morphometric analysis of craniofacial shape as an index of cerebro-craniofacial morphogenesis: initial application to sexual dimorphism. Biol Psychiatry 15: 507–514

    Article  Google Scholar 

  15. Hoffmann J, Cornelius CP, Groten M et al. (1998) Orbital reconstruction with individually copy-milled ceramic implants. Plast Reconstr Surg 101: 604–612

    PubMed  Google Scholar 

  16. Katakura A, Shibahara T, Noma H, Yoshinari M (2004) Material analysis of AO plate fracture cases. J Oral Maxillofac Surg 62: 348–352

    Article  PubMed  Google Scholar 

  17. Kessler P, Wiltfang J, Teschner M et al. (2000) Possibilities of computer graphics simulation in orthopedic surgery. Mund Kiefer GesichtsChir 4: 373–376

    Article  PubMed  Google Scholar 

  18. Krimmel M, Bacher M, Cornelius CP et al. (2002) Dreidimensionale Bildakquisition zur Analyse der primären, spaltbedingten Gesichtsdeformität mit einem optoelektronischen Oberflächenscanner. Mund Kiefer GesichtsChir 6: 158–161

    Article  PubMed  Google Scholar 

  19. Linss W, Beinemann J, Schleier P et al. (2003) Problems in the development of a comprehensive three-dimensional databank of the human skull for the preoperative preparation of an exact implant for the treatment of bone defects. Ann Anat 185: 247–251

    PubMed  Google Scholar 

  20. Meehan M, Teschner M, Girod S (2003) Three-dimensional simulation and prediction of craniofacial surgery. Orthod Craniofac Res 1: 102–107

    Article  Google Scholar 

  21. Neukam FW, Schultze-Mosgau S, Schultze-Mosgau S, Schliephake H (1997) Profile modification of the middle and lower face after anterior onlay osteoplasty in severe atrophy of the maxilla. Mund Kiefer GesichtsChir 1: 94–97

    Google Scholar 

  22. Nkenke E, Zachow S, Benz M et al. (2004) Fusion of computed tomography data and optical 3D images of the dentition for streak artefact correction in the simulation of orthognathic surgery. Dentomaxillofac Radiol 33: 226–232

    Article  PubMed  Google Scholar 

  23. Oehring H, Beleites E, Straube E et al. (1992) The effect of biomaterials and other industrial materials on the growth of several aerobic bacterial species in vitro. Zentralbl Hyg Umweltmed 192: 462–472

    PubMed  Google Scholar 

  24. Papadopoulos MA, Christou PK, Christou PK et al. (2002) Three-dimensional craniofacial reconstruction imaging. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 93: 382–393

    PubMed  Google Scholar 

  25. Payan Y, Chabanas M, Pelorson X et al. (2002) Biomechanical models to simulate consequences of maxillofacial surgery. C R Biologies 325: 407–417

    Article  PubMed  Google Scholar 

  26. Peled M, El-Naaj IA, Lipin Y, Ardekian L (2005) The use of free fibular flap for functional mandibular reconstruction. J Oral Maxillofac Surg 63: 220–224

    Article  PubMed  Google Scholar 

  27. Sader R, Deppe H, Neff A, Zeilhofer HF (1999) Bedeutung der Profilprognose bei der implantatgetragenen Versorgung des atrophischen Oberkiefers. Mund Kiefer GesichtsChir 3: 48–52

    Article  Google Scholar 

  28. Scholz M, Eufinger H, Wehmöller M et al. (1997) CAD/CAM (computer-aided design/computer-aided manufacturing) titanium implants for cranial and craniofacial defect reconstruction. Zentralbl Neurochir 58: 105–110

    PubMed  Google Scholar 

  29. Schultze-Mosgau S, Schliephake H, Schultze-Mosgau S, Neukam FW (2000) Soft tissue profile changes after autogenous iliac crest onlay grafting for the extremely atrophic maxilla. J Oral Maxillofac Surg 58: 971–977

    PubMed  Google Scholar 

  30. Schultze-Mosgau S, Keweloh M, Wiltfang J et al. (2001) Histomorphometric and densitometric changes in bone volume and structure after avascular bone grafting in the extremely atrophic maxilla. Br J Oral Maxillofac Surg 39: 439–447

    Article  PubMed  Google Scholar 

  31. Schultze-Mosgau S, Grabenbauer GG, Radespiel-Troger M et al. (2002) Vascularization in the transition area between free grafted soft tissues and pre-irradiated graft bed tissues following preoperative radiotherapy in the head and neck region. Head Neck 24: 42–51

    Article  PubMed  Google Scholar 

  32. Smolka W, Eggensperger N, Kollar A, Iizuka T (2005) Midfacial reconstruction using calvarial split bone grafts. Arch Otolaryngol Head Neck Surg 131: 131–136

    Article  PubMed  Google Scholar 

  33. Takushima A, Harii K, Asato H et al. (2005) Choice of osseous and osteocutaneous flaps for mandibular reconstruction. Int J Clin Oncol 10: 234–242

    Article  PubMed  Google Scholar 

  34. Weihe S, Wehmöller M, Schliephake H et al. (2000) Synthesis of CAD/CAM, robotics and biomaterial implant fabrication: single-step reconstruction in computer-aided frontotemporal bone resection. Int J Oral Maxillofac Surg 29: 384–388

    Article  PubMed  Google Scholar 

  35. Wiltfang J, Rupprecht S, Ganslandt O et al. (2003) Intraoperative image-guided surgery of the lateral and anterior skull base in patients with tumors or trauma. Skull Base 13: 21–29

    Article  PubMed  Google Scholar 

  36. Wiltfang J, Kessler P, Buchfelder M et al. (2004) Reconstruction of skull bone defects using the hydroxyapatite cement with calvarial split transplants. J Oral Maxillofac Surg 62: 29–35

    Article  PubMed  Google Scholar 

  37. Zins JE, Whitaker LA (1983) Membranous versus endochondral bone: implications for craniofacial reconstruction. Plast Reconstr Surg 72: 778–785

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Schleier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siebert, H., Schleier, P., Beinemann, J. et al. Evaluierung individueller, in der CAD/CAM-Technik gefertigter Bioverit®-Keramik-Implantate zur Wiederherstellung mehrdimensionaler kraniofazialer Defekte am menschlichen Schädel. Mund Kiefer GesichtsChir 10, 185–191 (2006). https://doi.org/10.1007/s10006-006-0687-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-006-0687-z

Schlüsselwörter

Keywords

Navigation