Skip to main content

Advertisement

Log in

Implants in bone: Part I. A current overview about tissue response, surface modifications and future perspectives

  • Review Article
  • Published:
Oral and Maxillofacial Surgery Aims and scope Submit manuscript

Abstract

Purpose

The aim of study paper is to present an overview of osseointegration of dental implants, focusing on tissue response, surface modifications and future perspective.

Discussion

Great progress has been made over the decades in the understanding of osseous peri-implant healing of dental implants, leading to the development of new implant materials and surfaces. However, failures and losses of implants are an indicator that there is room for improvement. Of particular importance is the understanding of the biological interaction between the implant and its surrounding bone.

Conclusion

The survival rates of dental implants in bone of over 90 % after 10 years show that they are an effective and well-established therapy option. However, new implant materials and surface modifications may be able to improve osseointegration of medical implants especially when the wound healing is compromised. Advanced techniques of evaluation are necessary to understand and validate osseointegration in these cases. An overview regarding the current state of the art in experimental evaluation of osseointegration of implants and implant material modifications will be given in Part II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Williams D (1988) Consensus and definitions in biomaterials. Advances in Biomaterials 8:11–6

    Google Scholar 

  2. Marziani L (1955) Subperiostale Gerüstimplantate zu prothetischen Zwecken. Deutsche Zahnärztliche Zeitung 10:1115–29

    CAS  Google Scholar 

  3. Jourdan. Geschichte der zahnärztlichen Implantologie. Zahn Mund und Kieferheilkunde. 2000;3(127)

  4. Branemark PI, Hansson BO, Adell R, Breine U, Lindstrom J, Hallen O et al (1977) Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg 16:1–132, Epub 1977/01/01

    CAS  Google Scholar 

  5. Branemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A (1969) Intra-osseous anchorage of dental prostheses: I. Experimental studies. Scand J Plast Reconstr Surg 3(2):81–100, Epub 1969/01/01

    PubMed  CAS  Google Scholar 

  6. Rudy RJ, Levi PA, Bonacci FJ, Weisgold AS, Engler-Hamm D (2008) Intraosseous anchorage of dental prostheses: an early 20th century contribution. Compend Contin Educ Dent 29(4):220, 2, 4, 6–8 passim. Epub 2008/06/06

    PubMed  Google Scholar 

  7. Buser D, Weber HP, Bragger U, Balsiger C (1994) Tissue integration of one-stage implants: three-year results of a prospective longitudinal study with hollow cylinder and hollow screw implants. Quintessence Int 25(10):679–686, Epub 1994/10/01

    PubMed  CAS  Google Scholar 

  8. Ersanli S, Karabuda C, Beck F, Leblebicioglu B (2005) Resonance frequency analysis of one-stage dental implant stability during the osseointegration period. J Periodontol 76(7):1066–1071, Epub 2005/07/16

    PubMed  CAS  Google Scholar 

  9. Gotfredsen K, Rostrup E, Hjorting-Hansen E, Stoltze K, Budtz-Jorgensen E (1991) Histological and histomorphometrical evaluation of tissue reactions adjacent to endosteal implants in monkeys. Clin Oral Implants Res 2(1):30–37, Epub 1991/01/01

    PubMed  CAS  Google Scholar 

  10. Simons AM, Molinari J, Sanford SL (1993) The microbial flora associated with endosseous implants. J Mich Dent Assoc 75(9):28–30, Epub 1993/11/01

    PubMed  CAS  Google Scholar 

  11. Maillet JM, Thierry S, Sverzut JM, Brodaty D. An unusual cause of acute abdominal pain after cardiac surgery: acute epiploic appendagitis. Interact Cardiovasc Thorac Surg. 2012. Epub 2012/05/02

  12. Branemark P. Introduction to osseointegration. In: Branemark P, Zarb G, Albrektsson T, editors. Tissue-integrated prothesis: osseointegration in clincical dentistry. Chicago, IL: Quintessence; 1985, p. 350

  13. Abrahamsson I, Berglundh T, Linder E, Lang NP, Lindhe J (2004) Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clin Oral Implants Res 15(4):381–392, Epub 2004/07/14

    PubMed  Google Scholar 

  14. Albrektsson T, Jacobsson M (1987) Bone-metal interface in osseointegration. J Prosthet Dent 57(5):597–607, Epub 1987/05/01

    PubMed  CAS  Google Scholar 

  15. Kenneth RSJ (1992) Particulate debris from medical implants: mechanisms of formation and biological consequences. ASTM, Philadelphia, PA 19103

    Google Scholar 

  16. Tuan RS (2011) Role of adult stem/progenitor cells in osseointegration and implant loosening. Int J Oral Maxillofac Implants 26(50–62):3–9, Epub 2011/04/09

    Google Scholar 

  17. Gruber R, Karreth F, Frommlet F, Fischer MB, Watzek G (2003) Platelets are mitogenic for periosteum-derived cells. J Orthop Res 21(5):941–948, Epub 2003/08/16

    PubMed  CAS  Google Scholar 

  18. Schlegel KA, Kloss FR, Kessler P, Schultze-Mosgau S, Nkenke E, Wiltfang J (2003) Bone conditioning to enhance implant osseointegration: an experimental study in pigs. Int J Oral Maxillofac Implants 18(4):505–511, Epub 2003/08/27

    PubMed  Google Scholar 

  19. Thorwarth M, Schlegel KA, Wiltfang J, Rupprecht S, Park JH. [Experimental pilot study on surface activation of implants with liposomal vectors]. Mund Kiefer Gesichtschir. 2004;8(4):250–5. Epub 2004/08/05. Experimentelle Untersuchung zur Oberflachenaktivierung von Implantaten durch liposomale Vektoren-eine Pilotstudie

    Google Scholar 

  20. Schlegel KA, Donath K, Rupprecht S, Falk S, Zimmermann R, Felszeghy E et al (2004) De novo bone formation using bovine collagen and platelet-rich plasma. Biomaterials 25(23):5387–5393, Epub 2004/05/08

    PubMed  CAS  Google Scholar 

  21. Kessler S, Kastler S, Mayr-Wohlfart U, Puhl W, Gunther KP. [Stimulation of primary osteoblast cultures with rh-TGF-beta, rh-bFGF, rh-BMP 2 and rx-BMP 4 in an in vitro model]. Orthopade. 2000;29(2):107–11. Epub 2000/04/01. Stimulation primarer Osteoblastenkulturen mit rh-TGF-beta, rh-bFGF, rh-BMP 2 und rx-BMP 4 in einem In-vitro-Modell

  22. Gruber R, Varga F, Fischer MB, Watzek G (2002) Platelets stimulate proliferation of bone cells: involvement of platelet-derived growth factor, microparticles and membranes. Clin Oral Implants Res 13(5):529–535, Epub 2002/11/28

    PubMed  Google Scholar 

  23. Arpornmaeklong P, Kochel M, Depprich R, Kubler NR, Wurzler KK (2004) Influence of platelet-rich plasma (PRP) on osteogenic differentiation of rat bone marrow stromal cells. An in vitro study. Int J Oral Maxillofac Surg 33(1):60–70, Epub 2003/12/24

    PubMed  CAS  Google Scholar 

  24. Dragoo JL, Choi JY, Lieberman JR, Huang J, Zuk PA, Zhang J et al (2003) Bone induction by BMP-2 transduced stem cells derived from human fat. J Orthop Res 21(4):622–629, Epub 2003/06/12

    PubMed  CAS  Google Scholar 

  25. Hoffmann A, Gross G (2001) BMP signaling pathways in cartilage and bone formation. Crit Rev Eukaryot Gene Expr 11(1–3):23–45, Epub 2001/11/06

    PubMed  CAS  Google Scholar 

  26. Ripamonti U, Ramoshebi LN, Matsaba T, Tasker J, Crooks J, Teare J (2001) Bone induction by BMPs/OPs and related family members in primates. J Bone Joint Surg Am 83(1):116–127, Epub 2001/04/21

    Google Scholar 

  27. Lieberman JR, Daluiski A, Einhorn TA (2002) The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am 84(6):1032–1044, Epub 2002/06/14

    PubMed  Google Scholar 

  28. Wiltfang J, Kloss FR, Kessler P, Nkenke E, Schultze-Mosgau S, Zimmermann R et al (2004) Effects of platelet-rich plasma on bone healing in combination with autogenous bone and bone substitutes in critical-size defects. An animal experiment. Clin Oral Implants Res 15(2):187–193, Epub 2004/03/11

    PubMed  Google Scholar 

  29. Thorwarth M, Rupprecht S, Falk S, Felszeghy E, Wiltfang J, Schlegel KA (2005) Expression of bone matrix proteins during de novo bone formation using a bovine collagen and platelet-rich plasma (prp)—an immunohistochemical analysis. Biomaterials 26(15):2575–2584, Epub 2004/12/09

    PubMed  CAS  Google Scholar 

  30. Davies JE (2003) Understanding peri-implant endosseous healing. J Dent Educ 67(8):932–949, Epub 2003/09/10

    PubMed  Google Scholar 

  31. Papaspyridakos P, Chen CJ, Singh M, Weber HP, Gallucci GO (2012) Success criteria in implant dentistry: a systematic review. J Dent Res 91(3):242–248, Epub 2011/12/14

    PubMed  CAS  Google Scholar 

  32. Weber HP, Sukotjo C (2007) Does the type of implant prosthesis affect outcomes in the partially edentulous patient? Int J Oral Maxillofac Implants 22:140–172, Epub 2008/04/29

    PubMed  Google Scholar 

  33. Tomasi C, Wennstrom JL, Berglundh T (2008) Longevity of teeth and implants — a systematic review. J Oral Rehabil 35(1):23–32, Epub 2008/01/10

    PubMed  Google Scholar 

  34. Mau J (1993) On statistics of success and loss for dental implants. Int Dent J 43(3):254–261, Epub 1993/06/01

    PubMed  CAS  Google Scholar 

  35. Stellingsma C, Vissink A, Meijer HJ, Kuiper C, Raghoebar GM (2004) Implantology and the severely resorbed edentulous mandible. Crit Rev Oral Biol Med 15(4):240–248, Epub 2004/07/31

    PubMed  CAS  Google Scholar 

  36. Kotsovilis S, Fourmousis I, Karoussis IK, Bamia C (2009) A systematic review and meta-analysis on the effect of implant length on the survival of rough-surface dental implants. J Periodontol 80(11):1700–1718, Epub 2009/11/13

    PubMed  Google Scholar 

  37. Klokkevold PR, Han TJ (2007) How do smoking, diabetes, and periodontitis affect outcomes of implant treatment? Int J Oral Maxillofac Implants 22:173–202, Epub 2008/04/29

    PubMed  Google Scholar 

  38. de Molon RS, Morais-Camilo JA, Verzola MH, Faeda RS, Pepato MT, Marcantonio E, Jr. Impact of diabetes mellitus and metabolic control on bone healing around osseointegrated implants: removal torque and histomorphometric analysis in rats. Clin Oral Implants Res. 2012. Epub 2012/04/19

  39. Javed F, Romanos GE (2009) Impact of diabetes mellitus and glycemic control on the osseointegration of dental implants: a systematic literature review. J Periodontol 80(11):1719–1730, Epub 2009/11/13

    PubMed  Google Scholar 

  40. Kotsovilis S, Karoussis IK, Fourmousis I (2006) A comprehensive and critical review of dental implant placement in diabetic animals and patients. Clin Oral Implants Res 17(5):587–599, Epub 2006/09/09

    PubMed  Google Scholar 

  41. Marchand F, Raskin A, Dionnes-Hornes A, Barry T, Dubois N, Valero R et al (2012) Dental implants and diabetes: conditions for success. Diabetes Metab 38(1):14–19, Epub 2012/01/31

    PubMed  CAS  Google Scholar 

  42. Marco F, Milena F, Gianluca G, Vittoria O (2005) Peri-implant osteogenesis in health and osteoporosis. Micron 36(7–8):630–644, Epub 2005/09/27

    PubMed  CAS  Google Scholar 

  43. Tsolaki IN, Madianos PN, Vrotsos JA (2009) Outcomes of dental implants in osteoporotic patients. A literature review. J Prosthodont 18(4):309–323, Epub 2009/02/13

    PubMed  Google Scholar 

  44. Dao TT, Anderson JD, Zarb GA (1993) Is osteoporosis a risk factor for osseointegration of dental implants? Int J Oral Maxillofac Implants 8(2):137–144, Epub 1993/01/01

    PubMed  CAS  Google Scholar 

  45. Gaetti-Jardim EC, Santiago-Junior JF, Goiato MC, Pellizer EP, Magro-Filho O, Jardim Junior EG (2011) Dental implants in patients with osteoporosis: a clinical reality? J Craniofac Surg 22(3):1111–1113, Epub 2011/05/19

    PubMed  Google Scholar 

  46. Levin L, Ofec R, Grossmann Y, Anner R (2011) Periodontal disease as a risk for dental implant failure over time: a long-term historical cohort study. J Clin Periodontol 38(8):732–737, Epub 2011/06/04

    PubMed  Google Scholar 

  47. Morton D (2008) Ganeles J. ITI treatment guide, Quintessenz Verlags

    Google Scholar 

  48. Ferrigno N, Laureti M, Fanali S, Grippaudo G (2002) A long-term follow-up study of non-submerged ITI implants in the treatment of totally edentulous jaws: Part I. Ten-year life table analysis of a prospective multicenter study with 1286 implants. Clin Oral Implants Res 13(3):260–273, Epub 2002/05/16

    PubMed  Google Scholar 

  49. Behneke A, Behneke N, d'Hoedt B. A 5-year longitudinal study of the clinical effectiveness of ITI solid-screw implants in the treatment of mandibular edentulism. Int J Oral Maxillofac Implants. 2002;17(6):799–810. Epub 2003/01/01

    Google Scholar 

  50. Arvidson K, Bystedt H, Frykholm A, von Konow L, Lothigius E (1998) Five-year prospective follow-up report of the Astra Tech Dental Implant System in the treatment of edentulous mandibles. Clin Oral Implants Res 9(4):225–234, Epub 1998/10/07

    PubMed  CAS  Google Scholar 

  51. Tarnow DP, Emtiaz S, Classi A (1997) Immediate loading of threaded implants at stage 1 surgery in edentulous arches: ten consecutive case reports with 1- to 5-year data. Int J Oral Maxillofac Implants 12(3):319–324, Epub 1997/05/01

    PubMed  CAS  Google Scholar 

  52. Salama H, Rose LF, Salama M, Betts NJ (1995) Immediate loading of bilaterally splinted titanium root-form implants in fixed prosthodontics—a technique reexamined: two case reports. Int J Periodontics Restorative Dent 15(4):344–361, Epub 1995/08/01

    PubMed  CAS  Google Scholar 

  53. Payne AG, Tawse-Smith A, Duncan WD, Kumara R (2002) Conventional and early loading of unsplinted ITI implants supporting mandibular overdentures. Clin Oral Implants Res 13(6):603–609, Epub 2003/01/10

    PubMed  Google Scholar 

  54. Turkyilmaz I (2006) Clinical and radiological results of patients treated with two loading protocols for mandibular overdentures on Branemark implants. J Clin Periodontol 33(3):233–238, Epub 2006/02/24

    PubMed  Google Scholar 

  55. Ioannidou E, Doufexi A (2005) Does loading time affect implant survival? A meta-analysis of 1,266 implants. J Periodontol 76(8):1252–1258, Epub 2005/08/17

    PubMed  Google Scholar 

  56. Esposito M, Grusovin MG, Achille H, Coulthard P, Worthington HV. Interventions for replacing missing teeth: different times for loading dental implants. Cochrane Database Syst Rev. 2009(1):CD003878. Epub 2009/01/23

  57. Kim TI, Han JH, Lee IS, Lee KH, Shin MC, Choi BB (1997) New titanium alloys for biomaterials: a study of mechanical and corrosion properties and cytotoxicity. Biomed Mater Eng 7(4):253–263, Epub 1997/01/01

    PubMed  CAS  Google Scholar 

  58. Nishiguchi S, Nakamura T, Kobayashi M, Kim HM, Miyaji F, Kokubo T (1999) The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials 20(5):491–500, Epub 1999/04/16

    PubMed  CAS  Google Scholar 

  59. Wong M, Eulenberger J, Schenk R, Hunziker E (1995) Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res 29(12):1567–1575, Epub 1995/12/01

    PubMed  CAS  Google Scholar 

  60. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H (1991) Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 25(7):889–902, Epub 1991/07/01

    PubMed  CAS  Google Scholar 

  61. Eisenbarth E, Meyle J, Nachtigall W, Breme J (1996) Influence of the surface structure of titanium materials on the adhesion of fibroblasts. Biomaterials 17(14):1399–1403, Epub 1996/07/01

    PubMed  CAS  Google Scholar 

  62. Wiskott HW, Belser UC (1999) Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin Oral Implants Res 10(6):429–444, Epub 2000/03/31

    PubMed  CAS  Google Scholar 

  63. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23(7):844–854, Epub 2006/08/15

    PubMed  Google Scholar 

  64. Anselme K, Bigerelle M (2006) Statistical demonstration of the relative effect of surface chemistry and roughness on human osteoblast short-term adhesion. J Mater Sci Mater Med 17(5):471–479, Epub 2006/05/12

    PubMed  CAS  Google Scholar 

  65. Marinucci L, Balloni S, Becchetti E, Belcastro S, Guerra M, Calvitti M et al (2006) Effect of titanium surface roughness on human osteoblast proliferation and gene expression in vitro. Int J Oral Maxillofac Implants 21(5):719–725, Epub 2006/10/28

    PubMed  Google Scholar 

  66. Setzer B, Bachle M, Metzger MC, Kohal RJ (2009) The gene-expression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia. Biomaterials 30(6):979–990, Epub 2008/11/26

    PubMed  CAS  Google Scholar 

  67. Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T (2004) Osteoinduction of porous bioactive titanium metal. Biomaterials 25(3):443–450, Epub 2003/10/31

    PubMed  CAS  Google Scholar 

  68. Albrektsson T, Wennerberg A (2004) Oral implant surfaces: Part 1—review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 17(5):536–543, Epub 2004/11/17

    PubMed  Google Scholar 

  69. Albrektsson T, Branemark PI, Hansson HA, Lindstrom J (1981) Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 52(2):155–170, Epub 1981/01/01

    PubMed  CAS  Google Scholar 

  70. Schroeder A, van der Zypen E, Stich H, Sutter F (1981) The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces. J Maxillofac Surg 9(1):15–25, Epub 1981/02/01

    PubMed  CAS  Google Scholar 

  71. Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res 20(4):172–184, Epub 2009/08/12

    PubMed  Google Scholar 

  72. Livne S, Marku-Cohen S, Harel N, Piek D, Ormianer Z. The influence of dental implant surface on osseointegration: review. Refuat Hapeh Vehashinayim. 2012;29(1):41–6, 66. Epub 2012/09/21

    Google Scholar 

  73. Novaes AB Jr, de Souza SL, de Barros RR, Pereira KK, Iezzi G, Piattelli A (2010) Influence of implant surfaces on osseointegration. Braz Dent J 21(6):471–481, Epub 2011/01/29

    PubMed  Google Scholar 

  74. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ (2005) Mediation of biomaterial–cell interactions by adsorbed proteins: a review. Tissue Eng 11(1–2):1–18, Epub 2005/03/02

    PubMed  CAS  Google Scholar 

  75. Jonasova L, Muller FA, Helebrant A, Strnad J, Greil P (2004) Biomimetic apatite formation on chemically treated titanium. Biomaterials 25(7–8):1187–1194, Epub 2003/12/04

    PubMed  CAS  Google Scholar 

  76. Kitsugi T, Nakamura T, Oka M, Senaha Y, Goto T, Shibuya T (1996) Bone-bonding behavior of plasma-sprayed coatings of BioglassR, AW-glass ceramic, and tricalcium phosphate on titanium alloy. J Biomed Mater Res 30(2):261–269, Epub 1996/02/01

    PubMed  CAS  Google Scholar 

  77. Jarcho M, Kay JF, Gumaer KI, Doremus RH, Drobeck HP (1977) Tissue, cellular and subcellular events at a bone–ceramic hydroxylapatite interface. J Bioeng 1(2):79–92, Epub 1977/01/01

    PubMed  CAS  Google Scholar 

  78. Burgess AV, Story BJ, La D, Wagner WR, LeGeros JP (1999) Highly crystalline MP-1 hydroxylapatite coating. Part I: In vitro characterization and comparison to other plasma-sprayed hydroxylapatite coatings. Clin Oral Implants Res 10(4):245–256, Epub 1999/11/07

    PubMed  CAS  Google Scholar 

  79. Nagano M, Nakamura T, Kokubo T, Tanahashi M, Ogawa M (1996) Differences of bone bonding ability and degradation behaviour in vivo between amorphous calcium phosphate and highly crystalline hydroxyapatite coating. Biomaterials 17(18):1771, Epub 1996/09/01

    PubMed  CAS  Google Scholar 

  80. van Oirschot BA, Bronkhorst EM, van den Beucken JJ, Meijer GJ, Jansen JA, Junker R. Long-term survival of calcium phosphate-coated dental implants: a meta-analytical approach to the clinical literature. Clin Oral Implants Res. 2012. Epub 2012/11/07

  81. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915, Epub 2006/02/02

    PubMed  CAS  Google Scholar 

  82. LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP (2003) Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med 14(3):201–209, Epub 2004/09/07

    PubMed  CAS  Google Scholar 

  83. Wilmowsky C, Müller L, Lutz R, Lohbauer U, Rupp F, Neukam F et al (2008) Osseointegration of chemically modified titanium surfaces: an in vivo dtudy. Adv Eng Mater 10:61–66

    Google Scholar 

  84. Lausmaa J (2001) In: Brunette DM, Tengvall P, Textor M, Thomsen P (eds) Titanium in Medicine. Springer Verlag, Dusseldorf, pp 231–266

    Google Scholar 

  85. Gong D, Grimes C, Varghese O, Hu W, Singh R, Chen Z et al (2001) J Mater Res 16:3331

    CAS  Google Scholar 

  86. Sul YT, Johansson CB, Roser K, Albrektsson T (2002) Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials 23(8):1809–1817, Epub 2002/04/13

    PubMed  CAS  Google Scholar 

  87. Park KH, Heo SJ, Koak JY, Kim SK, Lee JB, Kim SH et al (2007) Osseointegration of anodized titanium implants under different current voltages: a rabbit study. J Oral Rehabil 34(7):517–527, Epub 2007/06/15

    PubMed  CAS  Google Scholar 

  88. Takebe J, Itoh S, Okada J, Ishibashi K (2000) Anodic oxidation and hydrothermal treatment of titanium results in a surface that causes increased attachment and altered cytoskeletal morphology of rat bone marrow stromal cells in vitro. J Biomed Mater Res 51(3):398–407, Epub 2000/07/06

    PubMed  CAS  Google Scholar 

  89. Schwarz F, Herten M, Sager M, Wieland M, Dard M, Becker J (2007) Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA titanium implants: preliminary results of a pilot study in dogs. Clin Oral Implants Res 18(4):481–488, Epub 2007/05/09

    PubMed  Google Scholar 

  90. Zhao G, Raines AL, Wieland M, Schwartz Z, Boyan BD (2007) Requirement for both micron- and submicron scale structure for synergistic responses of osteoblasts to substrate surface energy and topography. Biomaterials 28(18):2821–2829, Epub 2007/03/21

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Ferguson SJ, Broggini N, Wieland M, de Wild M, Rupp F, Geis-Gerstorfer J et al (2006) Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface. J Biomed Mater Res A 78(2):291–297, Epub 2006/04/26

    PubMed  CAS  Google Scholar 

  92. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL et al (2005) High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A 74(1):49–58, Epub 2005/06/01

    PubMed  CAS  Google Scholar 

  93. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL et al (2004) Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 83((7):529–533, Epub 2004/06/26

    Google Scholar 

  94. Rupp F, Scheideler L, Olshanska N, de Wild M, Wieland M, Geis-Gerstorfer J (2006) Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. J Biomed Mater Res A 76(2):323–334, Epub 2005/11/05

    PubMed  CAS  Google Scholar 

  95. Steele JG, McFarland C, Dalton BA, Johnson G, Evans MD, Howlett CR et al (1993) Attachment of human bone cells to tissue culture polystyrene and to unmodified polystyrene: the effect of surface chemistry upon initial cell attachment. J Biomater Sci Polym Ed 5(3):245–257, Epub 1993/01/01

    PubMed  CAS  Google Scholar 

  96. Mendes VC, Moineddin R, Davies JE (2007) The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium surfaces. Biomaterials 28(32):4748–4755, Epub 2007/08/19

    PubMed  CAS  Google Scholar 

  97. Schwarz F, Ferrari D, Herten M, Mihatovic I, Wieland M, Sager M et al (2007) Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs. J Periodontol 78(11):2171–2184, Epub 2007/11/01

    PubMed  Google Scholar 

  98. Upasani VV, Farnsworth CL, Tomlinson T, Chambers RC, Tsutsui S, Slivka MA, et al. Pedicle screw surface coatings improve fixation in nonfusion spinal constructs. Spine (Phila Pa 1976). 2009;34(4):335–43. Epub 2009/02/03

  99. Browne M, Gregson PJ (2000) Effect of mechanical surface pretreatment on metal ion release. Biomaterials 21(4):385–392, Epub 2000/02/03

    PubMed  CAS  Google Scholar 

  100. Ducheyne P, Van Raemdonck W, Heughebaert JC, Heughebaert M (1986) Structural analysis of hydroxyapatite coatings on titanium. Biomaterials 7(2):97–103, Epub 1986/03/01

    PubMed  CAS  Google Scholar 

  101. Lacefield WR. Current status of ceramic coatings for dental implants. Implant dentistry. 1998;7(4):315–22. Epub 1999/04/10

    Google Scholar 

  102. Yang Y, Kim KH, Ong JL (2005) A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying. Biomaterials 26(3):327–337, Epub 2004/07/21

    PubMed  CAS  Google Scholar 

  103. Ong JL, Chan DC (2000) Hydroxyapatite and their use as coatings in dental implants: a review. Crit Rev Biomed Eng 28(5–6):667–707, Epub 2001/02/24

    PubMed  CAS  Google Scholar 

  104. Biesbrock AR, Edgerton M (1995) Evaluation of the clinical predictability of hydroxyapatite-coated endosseous dental implants: a review of the literature. Int J Oral Maxillofac Implants 10(6):712–720, Epub 1995/11/01

    PubMed  CAS  Google Scholar 

  105. Jeffcoat MK, McGlumphy EA, Reddy MS, Geurs NC, Proskin HM (2003) A comparison of hydroxyapatite (HA)-coated threaded, HA-coated cylindric, and titanium threaded endosseous dental implants. Int J Oral Maxillofac Implants 18(3):406–410, Epub 2003/06/20

    PubMed  Google Scholar 

  106. Binahmed A, Stoykewych A, Hussain A, Love B, Pruthi V (2007) Long-term follow-up of hydroxyapatite-coated dental implants—a clinical trial. Int J Oral Maxillofac Implants 22(6):963–968, Epub 2008/02/15

    PubMed  Google Scholar 

  107. Schliephake H, Scharnweber D, Roesseler S, Dard M, Sewing A, Aref A (2006) Biomimetic calcium phosphate composite coating of dental implants. Int J Oral Maxillofac Implants 21(5):738–746, Epub 2006/10/28

    PubMed  Google Scholar 

  108. Park JY, Davies JE (2000) Red blood cell and platelet interactions with titanium implant surfaces. Clin Oral Implants Res 11(6):530–539, Epub 2001/02/13

    PubMed  CAS  Google Scholar 

  109. Sodek J, Cheifetz S, Davies J (1999) Molecular egulation of osteogenesis. Bone Engineering. Em Squared Incoporated, Toronto, pp 31–34

    Google Scholar 

  110. Schakenraad J (1996) In: Ratner B, Hoffman A, Schoen F, Lemons J (eds) Biomaterial Science. Academic Press, San Diego, CA, pp 140–141

    Google Scholar 

  111. Hong J, Andersson J, Ekdahl KN, Elgue G, Axen N, Larsson R et al (1999) Titanium is a highly thrombogenic biomaterial: possible implications for osteogenesis. Thromb Haemost 82(1):58–64, Epub 1999/08/24

    PubMed  CAS  Google Scholar 

  112. Kanagaraja S, Lundstrom I, Nygren H, Tengvall P (1996) Platelet binding and protein adsorption to titanium and gold after short time exposure to heparinized plasma and whole blood. Biomaterials 17(23):2225–22232, Epub 1996/12/01

    PubMed  CAS  Google Scholar 

  113. Broberg M, Eriksson C, Nygren H (2002) GpIIb/IIIa is the main receptor for initial platelet adhesion to glass and titanium surfaces in contact with whole blood. J Lab Clin Med 139(3):163–172, Epub 2002/04/11

    PubMed  CAS  Google Scholar 

  114. Potts JR, Campbell ID (1994) Fibronectin structure and assembly. Curr Opin Cell Biol 6(5):648–655, Epub 1994/10/01

    PubMed  CAS  Google Scholar 

  115. Bagambisa FB, Kappert HF, Schilli W (1994) Cellular and molecular biological events at the implant interface. J Craniomaxillofac Surg 22(1):12–17, Epub 1994/02/01

    PubMed  CAS  Google Scholar 

  116. Sagnella S, Anderson E, Sanabria N, Marchant RE, Kottke-Marchant K (2005) Human endothelial cell interaction with biomimetic surfactant polymers containing Peptide ligands from the heparin binding domain of fibronectin. Tissue Eng 11(1–2):226–236, Epub 2005/03/02

    PubMed Central  PubMed  CAS  Google Scholar 

  117. Kantlehner M, Schaffner P, Finsinger D, Meyer J, Jonczyk A, Diefenbach B et al (2000) Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. ChemBioChem 1(2):107–114, Epub 2002/02/06

    PubMed  CAS  Google Scholar 

  118. Hasenbein ME, Andersen TT, Bizios R (2002) Micropatterned surfaces modified with select peptides promote exclusive interactions with osteoblasts. Biomaterials 23(19):3937–3942, Epub 2002/08/07

    PubMed  CAS  Google Scholar 

  119. Dettin M, Conconi MT, Gambaretto R, Pasquato A, Folin M, Di Bello C et al (2002) Novel osteoblast-adhesive peptides for dental/orthopedic biomaterials. J Biomed Mater Res 60(3):466–471, Epub 2002/03/29

    PubMed  CAS  Google Scholar 

  120. Schaffner P, Dard MM (2003) Structure and function of RGD peptides involved in bone biology. Cell Mol Life Sci 60(1):119–132, Epub 2003/03/05

    PubMed  CAS  Google Scholar 

  121. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69(1):11–25, Epub 1992/04/03

    PubMed  CAS  Google Scholar 

  122. Faull RJ, Ginsberg MH (1996) Inside-out signaling through integrins. J Am Soc Nephrology: JASN 7(8):1091–1097, Epub 1996/08/01

    PubMed  CAS  Google Scholar 

  123. Matsuura T, Hosokawa R, Okamoto K, Kimoto T, Akagawa Y (2000) Diverse mechanisms of osteoblast spreading on hydroxyapatite and titanium. Biomaterials 21(11):1121–1127, Epub 2000/05/19

    PubMed  CAS  Google Scholar 

  124. Tweden KS, Harasaki H, Jones M, Blevitt JM, Craig WS, Pierschbacher M et al (1995) Accelerated healing of cardiovascular textiles promoted by an RGD peptide. J Heart Valve Dis 4(1):S90–97, Epub 1995/07/01

    PubMed  Google Scholar 

  125. Woerly S, Laroche G, Marchand R, Pato J, Subr V, Ulbrich K (1995) Intracerebral implantation of hydrogel-coupled adhesion peptides: tissue reaction. J Neural Transplant Plast 5(4):245–255, Epub 1995/01/01

    PubMed  CAS  Google Scholar 

  126. Kishida A, Takatsuka M, Matsuda T (1992) RGD–albumin conjugate: expression of tissue regeneration activity. Biomaterials 13(13):924–930, Epub 1992/01/01

    PubMed  CAS  Google Scholar 

  127. Schliephake H, Scharnweber D, Dard M, Sewing A, Aref A, Roessler S (2005) Functionalization of dental implant surfaces using adhesion molecules. J Biomed Mater Res B Appl Biomater 73(1):88–96, Epub 2005/03/24

    PubMed  CAS  Google Scholar 

  128. Urist MR, Sato K, Brownell AG, Malinin TI, Lietze A, Huo YK et al (1983) Human bone morphogenetic protein (hBMP). Proc Soc Exp Biol Med 173(2):194–199, Epub 1983/06/01

    PubMed  CAS  Google Scholar 

  129. Wang EA, Rosen V, D'Alessandro JS, Bauduy M, Cordes P, Harada T et al (1990) Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci U S A 87(6):2220–2224, Epub 1990/03/01

    PubMed Central  PubMed  CAS  Google Scholar 

  130. Cook SD, Wolfe MW, Salkeld SL, Rueger DC (1995) Effect of recombinant human osteogenic protein-1 on healing of segmental defects in non-human primates. J Bone Joint Surg Am 77(5):734–750, Epub 1995/05/01

    PubMed  CAS  Google Scholar 

  131. Sucato DJ, Hedequist D, Zhang H, Pierce WA, O'Brien SE, Welch RD (2004) Recombinant human bone morphogenetic protein-2 enhances anterior spinal fusion in a thoracoscopically instrumented animal model. J Bone Joint Surg Am 86(4):752–762, Epub 2004/04/08

    PubMed  Google Scholar 

  132. Dickinson BP, Ashley RK, Wasson KL, O'Hara C, Gabbay J, Heller JB et al (2008) Reduced morbidity and improved healing with bone morphogenic protein-2 in older patients with alveolar cleft defects. Plast Reconstr Surg 121(1):209–217, Epub 2008/01/08

    PubMed  CAS  Google Scholar 

  133. Jovanovic SA, Hunt DR, Bernard GW, Spiekermann H, Nishimura R, Wozney JM et al (2003) Long-term functional loading of dental implants in rhBMP-2 induced bone. A histologic study in the canine ridge augmentation model. Clin Oral Implants Res 14(6):793–803, Epub 2004/03/16

    PubMed  Google Scholar 

  134. Sailer HF, Kolb E (1994) Application of purified bone morphogenetic protein (BMP) preparations in cranio-maxillo-facial surgery. Reconstruction in craniofacial malformations and post-traumatic or operative defects of the skull with lyophilized cartilage and BMP. J Craniomaxillofac Surg 22(4):191–199, Epub 1994/08/01

    PubMed  CAS  Google Scholar 

  135. Sailer HF, Kolb E (1994) Application of purified bone morphogenetic protein (BMP) in cranio-maxillo-facial surgery. BMP in compromised surgical reconstructions using titanium implants. J Craniomaxillofac Surg 22(1):2–11, Epub 1994/02/01

    PubMed  CAS  Google Scholar 

  136. Sellers RS, Zhang R, Glasson SS, Kim HD, Peluso D, D'Augusta DA et al (2000) Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2 (rhBMP-2). J Bone Joint Surg Am 82(2):151–160, Epub 2000/02/22

    PubMed  CAS  Google Scholar 

  137. Park J, Ries J, Gelse K, Kloss F, von der Mark K, Wiltfang J et al (2003) Bone regeneration in critical size defects by cell-mediated BMP-2 gene transfer: a comparison of adenoviral vectors and liposomes. Gene Ther 10(13):1089–1098, Epub 2003/06/17

    PubMed  CAS  Google Scholar 

  138. Bebok Z, Abai AM, Dong JY, King SA, Kirk KL, Berta G et al (1996) Efficiency of plasmid delivery and expression after lipid-mediated gene transfer to human cells in vitro. J Pharmacol Exp Ther 279(3):1462–1469, Epub 1996/12/01

    PubMed  CAS  Google Scholar 

  139. Baltzer AW, Lieberman JR (2004) Regional gene therapy to enhance bone repair. Gene Ther 11(4):344–350, Epub 2004/01/16

    PubMed  CAS  Google Scholar 

  140. Lutz R, Park J, Felszeghy E, Wiltfang J, Nkenke E, Schlegel KA (2008) Bone regeneration after topical BMP-2-gene delivery in circumferential peri-implant bone defects. Clin Oral Implants Res 19(6):590–599, Epub 2008/04/22

    PubMed  Google Scholar 

  141. Park J, Lutz R, Felszeghy E, Wiltfang J, Nkenke E, Neukam FW et al (2007) The effect on bone regeneration of a liposomal vector to deliver BMP-2 gene to bone grafts in peri-implant bone defects. Biomaterials 28(17):2772–2782, Epub 2007/03/07

    PubMed  CAS  Google Scholar 

  142. Al-Radha AS, Dymock D, Younes C, O'Sullivan D (2012) Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion. J Dent 40(2):146–153, Epub 2011/12/21

    PubMed  CAS  Google Scholar 

  143. Stejskal J, Stejskal VD (1999) The role of metals in autoimmunity and the link to neuroendocrinology. Neuro Endocrinol Lett 20(6):351–364, Epub 2001/07/18

    PubMed  CAS  Google Scholar 

  144. Valentine-Thon E, Schiwara HW (2003) Validity of MELISA for metal sensitivity testing. Neuro Endocrinol Lett 24(1–2):57–64, Epub 2003/05/14

    PubMed  CAS  Google Scholar 

  145. Bianco PD, Ducheyne P, Cuckler JM (1996) Local accumulation of titanium released from a titanium implant in the absence of wear. J Biomed Mater Res 31(2):227–234, Epub 1996/06/01

    PubMed  CAS  Google Scholar 

  146. Weingart D, Steinemann S, Schilli W, Strub JR, Hellerich U, Assenmacher J et al (1994) Titanium deposition in regional lymph nodes after insertion of titanium screw implants in maxillofacial region. Int J Oral Maxillofac Surg 23(6 Pt 2):450–452, Epub 1994/12/01

    PubMed  CAS  Google Scholar 

  147. Villermaux F. Zirconia–alumina as the new generation of ceramic–ceramic THP: wear performance evaluation including extreme life conditions: Society for Biomaterials; 2000

  148. Peroglio M, Gremillard L, Chevalier J, Chazeau L, Gauthier C, Hamaide T (2007) Toughening of bioceramics scaffolds by polymer coating. J Eur Ceram Soc 27:2679–85

    CAS  Google Scholar 

  149. Oliva J, Oliva X, Oliva JD (2010) Five-year success rate of 831 consecutively placed Zirconia dental implants in humans: a comparison of three different rough surfaces. Int J Oral Maxillofac Implants 25(2):336–344, Epub 2010/04/07

    PubMed  Google Scholar 

  150. Schliephake H, Hefti T, Schlottig F, Gedet P, Staedt H (2010) Mechanical anchorage and peri-implant bone formation of surface-modified zirconia in minipigs. J Clin Periodontol 37(9):818–828, Epub 2010/06/25

    PubMed  Google Scholar 

  151. Gahlert M, Gudehus T, Eichhorn S, Steinhauser E, Kniha H, Erhardt W (2007) Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs. Clin Oral Implants Res 18(5):662–668, Epub 2007/07/05

    PubMed  CAS  Google Scholar 

  152. Wenz HJ, Bartsch J, Wolfart S, Kern M (2008) Osseointegration and clinical success of zirconia dental implants: a systematic review. Int J Prosthodont 21(1):27–36, Epub 2008/03/21

    PubMed  Google Scholar 

  153. Price RL, Gutwein LG, Kaledin L, Tepper F, Webster TJ (2003) Osteoblast function on nanophase alumina materials: influence of chemistry, phase, and topography. J Biomed Mater Res A 67(4):1284–1293, Epub 2003/11/19

    PubMed  Google Scholar 

  154. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R (2000) Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21(17):1803–1810, Epub 2000/07/25

    PubMed  CAS  Google Scholar 

  155. Zhou H, Choong P, McCarthy R, Chou ST, Martin TJ, Ng KW (1994) In situ hybridization to show sequential expression of osteoblast gene markers during bone formation in vivo. J Bone Miner Res 9(9):1489–1499, Epub 1994/09/01

    PubMed  CAS  Google Scholar 

  156. Macak JM, Tsuchiya H, Schmuki P (2005) High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angew Chem Int Ed Engl 44(14):2100–2102, Epub 2005/03/01

    PubMed  CAS  Google Scholar 

  157. Bauer S, Kleber S, Schmuki P (2006) TiO2 nanotubes: tailoring the geometry in H3PO4/HF electrolytes. Electrochem Commun 8:1321–5

    CAS  Google Scholar 

  158. Park J, Bauer S, von der Mark K, Schmuki P (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7(6):1686–1691, Epub 2007/05/17

    PubMed  CAS  Google Scholar 

  159. Lee SB, Mitchell DT, Trofin L, Nevanen TK, Soderlund H, Martin CR (2002) Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296(5576):2198–2200, Epub 2002/06/22

    PubMed  CAS  Google Scholar 

  160. Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Soderlund H et al (2002) Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 124(40):11864–11865, Epub 2002/10/03

    PubMed  CAS  Google Scholar 

  161. Yao C, Balasundaram G, Webster T. Nanostructures and novel devices for biological and chemical detection. In: Li C, Zribi A, Nagahara L, Willander M, editors. Nanofunctional materials. Warrendale, PA: Materials Research Society Symposium Proceedings 951 E; 2007

  162. von Wilmowsky C, Schwarz S, Kerl JM, Srour S, Lell M, Felszeghy E et al (2010) Reconstruction of a mandibular defect with autogenous, autoclaved bone grafts and tissue engineering: an in vivo pilot study. J Biomed Mater Res A 93(4):1510–1518, Epub 2009/12/17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelius von Wilmowsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Wilmowsky, C., Moest, T., Nkenke, E. et al. Implants in bone: Part I. A current overview about tissue response, surface modifications and future perspectives. Oral Maxillofac Surg 18, 243–257 (2014). https://doi.org/10.1007/s10006-013-0398-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-013-0398-1

Keywords

Navigation