Skip to main content
Log in

Microwave-assisted synthesis of tin sulfide nanoflakes and their electrochemical performance as Li-inserting materials

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel and quick method has been developed for the preparation of tin sulfide (SnS and SnS2) nanoflakes in high yield (≈93%) by a microwave irradiation technique for 10–40 min. The sulfides were synthesized in a simple domestic microwave oven (DMO) using stannic chloride and stanous chloride as the precursors of tin and thiourea as the precursor of sulfur in ethylene glycol under argon atmosphere. Elemental sulfur and sodium thiosulfate were also tried as precursors of sulfur. The structures, morphologies, compositions, and physical properties of the products were characterized by powder X-ray diffraction (XRD), differential scanning calorimetry, energy dispersive X-ray analysis, transmission electron microscopy, selected area electron diffraction, Raman spectroscopy, and standard electrochemical techniques. The XRD patterns indicate that the as-synthesized product, obtained after microwave irradiation, is crystalline orthorhombic in the case of the SnS phase and amorphous in the case of SnS2. Heat treatment of this SnS2 produced a crystalline hexagonal phase. A possible mechanism for the formation of the tin sulfide nanoflakes is proposed herein. The electrochemical performance of these materials as Li-insertion materials was investigated in a number of electrolyte solutions and was found to be highly sensitive to the solution composition. A stable reversible capacity higher than 600 mAh/g could be obtained with SnS electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Heath JR (1999) Acc Chem Res 32:387

    Article  Google Scholar 

  2. Gorer S, Hodes G (1994) J Phys Chem 98:5338

    Article  CAS  Google Scholar 

  3. Empedocles SA (1999) J Phys Chem B 103:1826

    Article  CAS  Google Scholar 

  4. Ludolph B, Malik MA, O’Brien P, Revaprasadu N (1998) Chem Commun 17:1849

    Article  Google Scholar 

  5. Alivisatos AP (1996) Science 271:933

    Article  CAS  Google Scholar 

  6. Jun YW, Jung YY, Cheon JJ (2002) J Am Chem Soc 124:615

    Article  PubMed  CAS  Google Scholar 

  7. Shiang JJ, Kadavanich AV, Grubbs RK, Alivi-Satos AP (1995) J Phys Chem 99:17417

    Article  CAS  Google Scholar 

  8. Ahmadi S, Wang ZL, Green TC, Henglein A, El-Sayed, MA (1996) Science 272:1924

    Article  PubMed  CAS  Google Scholar 

  9. Bube RH (1960) Photoconductivity of solids. Wiley, New York, p 233

    Google Scholar 

  10. Nair MTS, Nair PK (1991) Semicond Sci Technol 6:123

    Article  Google Scholar 

  11. Prince MB (1955) J Appl Phys 26:534

    Article  Google Scholar 

  12. Loferski JJ (1956) J Appl Phys 27:777

    Article  CAS  Google Scholar 

  13. Agarwal A, Patel PD, Lakshminarayana D (1994) J Cryst Growth 142:344

    Article  CAS  Google Scholar 

  14. Lokhande CD (1990) J Phys D Appl Phys 23:703

    Article  Google Scholar 

  15. Domingo G, Itoga RS, Cannewurf CR (1966) Phys Rev 143:536

    Article  CAS  Google Scholar 

  16. Chu DR, Walser M, Bene RW, Courtney TH (1974) Appl Phys Lett 24:479

    Article  Google Scholar 

  17. Polarz S, Smarsly B, Goltner C, Antonietti M (2000) Adv Mater 121:503

    Google Scholar 

  18. Morales J, Perez VC, Santos J, Tirado LJ (1996) J Electrochem Soc 143:2847

    Article  CAS  Google Scholar 

  19. Szabó DV, Vollath D (1999) Nanostruct Mater 12:597

    Article  Google Scholar 

  20. Baghurst DR, Mingos DMP (1991) Chem Soc Rev 20:1

    Article  Google Scholar 

  21. Mingos DMP (1994) Chem Ind 15:596

    Google Scholar 

  22. Chen D, Shen G, Tang K, Lei S, Zheng H, Qian Y (2004) J Cryst Growth 260:469

    Article  CAS  Google Scholar 

  23. Momma T, Shiraishi A, Yoshizawa A, Osaka T, Gedanken A, Zhu J, Sominski L (2001) J Power Sources 97:198

    Article  Google Scholar 

  24. Mukaibo H, Yoshizawa A, Momma T, Osaka T (2003) J Power Sources 119:60

    Article  CAS  Google Scholar 

  25. Jayalakshmi M, Rao MM, Choudary BM (2004) Electrochem Commun 6:1119

    Article  CAS  Google Scholar 

  26. Palchik O, Felner I, Kataby G, Gedanken A (2000) J Mater Res 15:2176

    CAS  Google Scholar 

  27. Lucovsky G, Mikkelsen JC, Liang WY Jr, White RM, Martin RM (1976) Phys Rev B 14:1663

    Article  CAS  Google Scholar 

  28. Abello L, Bochu B, Gaskov A, Koudryavtseva S, Lucazeau G, Roumyantseva M (1998) J Solid State Chem 135:78

    Article  CAS  Google Scholar 

  29. He R, Qian X, Yin J, Zhu Z (2003) J Cryst Growth 252:505

    Article  CAS  Google Scholar 

  30. Wang H, Zhu J-M, Zhu J-J, Yuan L-M, Chen HY (2003) Langmuir 19:10993

    Article  CAS  Google Scholar 

  31. Kerner R, Palchik O, Gedanken A (2001) Chem Mater 13:1413

    Article  CAS  Google Scholar 

  32. Galema SA (1997) Chem Soc Rev 26:233 (and the references therein)

    Article  CAS  Google Scholar 

  33. Brousse T, Lee SM, Pasquereau L, Defive D, Schleich DM (1998) Solid State Ionics 115:51

    Article  Google Scholar 

  34. Xu K, Zhang S, Poese BA, Jow TR (2002) Electrochem Solid State Lett 5:A259

    Article  CAS  Google Scholar 

  35. Zhu J, Lu Z, Aruna ST, Aurbach D, Gedanken A (2000) Chem Mater 12:2557

    Article  CAS  Google Scholar 

  36. Aurbach D, Nimberger A, Markovsky B, Levi E, Sominski E, Gedanken A (2002) Chem Mater 14:4155

    Article  CAS  Google Scholar 

  37. Aurbach D, Markovsky B, Schechter A, Ein-Eli Y, Cohen H (1996) J Electrochem Soc 143:3809

    Article  CAS  Google Scholar 

  38. Aurbach D, Gofer YJ (1991) J Electrochem Soc 138:3529

    Article  CAS  Google Scholar 

  39. Aurbach D, Ein-Eli Y, Chusid O, Babai M, Carmeli Y, Yamin H (1994) J Electrochem Soc 141:603

    Article  CAS  Google Scholar 

  40. Aurbach D, Daroux ML, Faguy P, Yeager E (1991) J Electroanal Chem 297:225

    Article  CAS  Google Scholar 

  41. Aurbach D, Gofer Y, Ben-Zion M, Aped P (1992) J Electroanal Chem 339:451

    Article  CAS  Google Scholar 

  42. Matsuta S, Asada T, Kitaura K (2000) J Electrochem Soc 147:1695

    Article  CAS  Google Scholar 

  43. Wang YX, Balbuena P (2002) J Phys Chem B 106:4486

    Article  CAS  Google Scholar 

  44. Aurbach D, Markovsky B, Gamolsky K, Levi E, Ein-Eli Y (1999) Electrochim Acta 45:67

    Article  CAS  Google Scholar 

  45. Huggins RA (1999) In: Besenhard JO (ed) Handbook of battery materials, part 3, chap 4. Wiley, Weinheim and New York, p 370

    Google Scholar 

  46. Aurbach D, Gamolsky K, Markovsky B, Gofer Y (2002) Electrochim Acta 47:142

    Google Scholar 

Download references

Acknowledgement

Partial support for this work was obtained from the EC within the framework of the 5th Program of the Nanobatt Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron Aurbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patra, C.R., Odani, A., Pol, V.G. et al. Microwave-assisted synthesis of tin sulfide nanoflakes and their electrochemical performance as Li-inserting materials. J Solid State Electrochem 11, 186–194 (2007). https://doi.org/10.1007/s10008-005-0086-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0086-7

Keywords

Navigation