Skip to main content
Log in

Electrochemistry and electrocatalytic activity of catechin film on a glassy carbon electrode toward the oxidation of hydrazine

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A very stable electroactive film of catechin was electrochemically deposited on the surface of activated glassy carbon electrode. The electrochemical behavior of catechin modified glassy carbon electrode (CMGCE) was extensively studied using cyclic voltammetry. The properties of the electrodeposited films, during preparation under different conditions, and the stability of the deposited film were examined. The charge transfer coefficient (α) and charge transfer rate constant (k s) for catechin deposited film were calculated. It was found that the modified electrode exhibited excellent electrocatalytic activity toward hydrazine oxidation and it also showed a very large decrease in the overpotential for the oxidation of hydrazine. The CMGCE was employed to study electrocatalytic oxidation of hydrazine using cyclic voltammetry, rotating disk voltammetry, chronoamperometry, amperometry and square-wave voltammetry as diagnostic techniques. The catalytic rate constant of the modified electrode for the oxidation of hydrazine was determined by cyclic voltammetry, chronoamperometry and rotating disk voltammetry and was found to be around 10−3  cm s−1 . In the used different voltammetric methods, the plot of the electrocatalytic current versus hydrazine concentration is constituted of two linear segments with different ranges of hydrazine concentration. Furthermore, amperometry in stirred solution exhibits a detection limit of 0.165 μM and the precision of 4.7% for replicate measurements of 40.0 μM solution of hydrazine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Schessl HW (1995) In: Othmer K (ed) Encyclopedia of chemical technology, 4th edn, vol 13. Wiley, New York, pp 560

  2. Choudhary G, Hansen H (1998) Chemosphere 37:801

    Article  PubMed  CAS  Google Scholar 

  3. Amlathe S, Gupta VK (1988) Analyst 113:1481

    Article  PubMed  CAS  Google Scholar 

  4. Zhi Z, Ren J, Qing Z (1992) Gaoden Xuexiao Huaxue Xuebao 14:1710

    Google Scholar 

  5. Ensafi AA, Naderi B (1997) Microchem J 56:269

    Article  CAS  Google Scholar 

  6. Wang Y (1992) Shanghai Huanjing Kexue 11:28

    CAS  Google Scholar 

  7. Preece NE, Forrow S, Ghatineh S, Langley GJ, Timbrell JA (1992) J Chromatogr 573:227

    Article  PubMed  CAS  Google Scholar 

  8. Poster TJ, Vajgand VJ, Antonijeic NV (1983) Mikrochim Acta 3:203

    Article  Google Scholar 

  9. Mo JW, Ogorevc B, Zhang XJ, Pihlar B (2000) Electroanalysis 12:48

    Article  CAS  Google Scholar 

  10. Fiala ES, Kulakis CJ (1981) J Chromatogr 214:229

    Article  CAS  Google Scholar 

  11. Li X, Zhang S, Sun C (2003) J Electroanal Chem 553:139

    Article  CAS  Google Scholar 

  12. Pingarrón JM, Ortiz Hernández I, González-Cortés A, Yáñez-Sedeño P (2001) Anal Chim Acta 439:281

    Article  Google Scholar 

  13. Yang M, Li HL (2001) Talanta 55:479

    Article  Google Scholar 

  14. Casella IG, Guascito MR, Salvi AM, Desimoni E (1997) Anal Chim Acta 354:333

    Article  CAS  Google Scholar 

  15. Golabi SM, Noor-Mohammadi F (1998) J Solid State Electrochem 354:333

    Google Scholar 

  16. Scharf U, Grabner EW (1996) Electrochimica Acta 41:233

    Article  CAS  Google Scholar 

  17. Wang W, Chen Q, Cepria G (1996) Talanta 43:1387

    Article  CAS  Google Scholar 

  18. Golabi SM, Zare HR (1999) J Electroanal Chem 465:168

    Article  CAS  Google Scholar 

  19. Salimi A, Abdi K, Khayatian G (2004) Microchim Acta 144:161

    Article  CAS  Google Scholar 

  20. Middleton E Jr, Kandaswami C, Harborne JB (1986) In the flavonoids, chap 15. Chapman and Hall, London

  21. Thompson RS, Jacques D, Haslam E, Tanner RJN (1972) J Chem Soc Perkin Trans 1:1387

    Article  Google Scholar 

  22. Miller JN, Miller JC (2000) Statistics and chemometrics for analytical chemistry, 4th edn. Pearson Education Ltd, Harlow

    Google Scholar 

  23. Nematollahi D, Golabi SM (1996) J Electroanal Chem 405:133

    Article  Google Scholar 

  24. Golabi SM, Nematollahi D (1997) J Electroanal Chem 420:127

    Article  CAS  Google Scholar 

  25. Schreurs J, Van der Berg J, Wonders A, Barendrecht E (1984) Rec Trav Chim Pays-Bas 103:251

    CAS  Google Scholar 

  26. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  27. Garton L, Torstensson A, Jaegfeldt H, Johansson G (1984) J Electroanal Chem 161:103

    Article  Google Scholar 

  28. Florou AB, Prodromidis MI, Tzouwara-Karayanni SM (1998) Electroanalysis 10:1261

    Article  CAS  Google Scholar 

  29. Ju H, Shen C (2001) Electroanalysis 13:789

    Article  CAS  Google Scholar 

  30. Laviron E (1979) J Electroanal Chem 101:19

    Article  CAS  Google Scholar 

  31. Sharp M, Petersson M, Edström K (1979) J Electroanal Chem 95:123

    Article  CAS  Google Scholar 

  32. Zare HR, Golabi SM (1999) J Electroanal Chem 464:14

    Article  CAS  Google Scholar 

  33. Golabi SM, Zare HR (2000) J Solid State Electrochem 4:87

    Google Scholar 

  34. Golabi SM, Zare HR, Hamzehloo M (2002) Electroanalysis 14:611

    Article  CAS  Google Scholar 

  35. Jaegfeldt H, Kuwana T, Johansson G (1983) J Am Chem Soc 105:1805

    Article  CAS  Google Scholar 

  36. Jaegfeldt H, Torstensson ABC, Gorton LGO, Johansson G (1981) Anal Chem 53:1979

    Article  CAS  Google Scholar 

  37. Laviron E (1983) J Electroanal Chem 146:15

    Article  CAS  Google Scholar 

  38. Kojima H, Bard AJ (1975) J Am Chem Soc 97:6317

    Article  CAS  Google Scholar 

  39. Laviron E (1983) J Electroanal Chem 146:1

    Article  CAS  Google Scholar 

  40. Laviron E (1984) J Electroanal Chem 164:213

    Article  CAS  Google Scholar 

  41. Janeiro P, Brett AMO (2004) Anal Chim Acta 518:109

    Article  CAS  Google Scholar 

  42. Horspool WM, Smith PI, Tedder JM (1972) J Chem Soc Perkin Trans 1024

  43. Lorenzo E, Sanchez L, Pariente F, Tirado J, Abruna HD (1995) Anal Chim Acta 309:79

    Article  CAS  Google Scholar 

  44. Narayanan SS, Scholz F (1999) Electroanalysis 11:465

    Article  CAS  Google Scholar 

  45. Li T, Wang E (1997) Electroanalysis 9:1205

    Article  CAS  Google Scholar 

  46. Gong X, Zhou YK, Li HL (2001) Talanta 55:1103

    Article  CAS  Google Scholar 

  47. Niu L, You T, Gui JY, Wang E, Dong S (1998) J Electroanal Chem 448:79

    Article  CAS  Google Scholar 

  48. Andrieux CP, Saveant JM (1978) J Electroanal Chem 93:163

    Article  CAS  Google Scholar 

  49. Rocklin RD, Murray RW (1981) J Phys Chem 85:2104

    Article  CAS  Google Scholar 

  50. Galus Z (1994) Fundamentals of Electrochemical Analysis. Ellis Horwood, New York

    Google Scholar 

  51. Wang BC, Cao XQ (1991) J Electroanal Chem 309:147

    Article  CAS  Google Scholar 

  52. Skoog DA, Holler FJ, Nieman TA (2001) Principles of instrumental analysis, 5th edn. Harcourt Brace, Philadelphia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid R. Zare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zare, H.R., Habibirad, A.M. Electrochemistry and electrocatalytic activity of catechin film on a glassy carbon electrode toward the oxidation of hydrazine. J Solid State Electrochem 10, 348–359 (2006). https://doi.org/10.1007/s10008-005-0683-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-005-0683-5

Keywords

Navigation