Skip to main content
Log in

Double template electrochemical deposition and characterization of NiCo and NiCu alloys nanoparticles and nanofilms

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The principle of double template deposition technique was developed to prepare NiCo and NiCu alloy nanomaterials. Ordered particles of about 800 nm high were obtained by reduction of ions from aqueous solution into the pores of anodic aluminum oxide (AAO) membrane with intact barrier layer. The size of the nanoparticles was significantly reduced by combination of AAO and the hexagonal phase of a lyotropic liquid crystal. The scanning tunneling microscopy (STM) micrograph of the material prepared in the presence of liquid crystal reveals the hexagonal array of cylindrical pores. The corrosion potential of the alloy nanofilm shifted to more negative values when the sizes of the particles decrease. The anodic linear sweep voltammetry shows, in each case, various current peaks characteristic of the dissolution of chemical elements in the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Myung NV, Nobe K (2001) J Electrochem Soc 148:C136

    Article  CAS  Google Scholar 

  2. Qin J, Nogués J, Mikhaylova M, Roig A, Muñoz JS, Muhammed M (2005) Chem Mater 17:1829

    Article  CAS  Google Scholar 

  3. Prieto AG, Fdez-Gubieda ML (2004) Physica B 354:92

    Article  Google Scholar 

  4. Soler MAG, Da Silva SW, Garg VK, Oliveira AC, Azevedo RB, Pimenta ACM, Lima ECD, Morais PC (2005) Surf Sci 575:12

    Article  CAS  Google Scholar 

  5. Bettge M, Chatterjee J, Haik Y (2004) Biomagn Res Technol 2:1

    Article  Google Scholar 

  6. Myung NV, Park DY, Yoo BY, Sumodjo PTA (2003) J Magn Magn Mater 265:189

    Article  CAS  Google Scholar 

  7. Pattanaik GR, Pandya DK, Kashyap SC (2002) J Electrochem Soc 149:C363

    Article  CAS  Google Scholar 

  8. Weihnacht V, Péter L, Tóth J, Pádár J, Kerner Z, Schneider CM, Bakonyi I (2003) J Electrochem Soc 150:C507

    Article  CAS  Google Scholar 

  9. Guo L, Leobandung E, Chou SY (1997) Science 27:649

    Article  Google Scholar 

  10. Iwasaki T, Motoi T, Den T (1999) Appl Phys Lett 75:2044

    Article  CAS  Google Scholar 

  11. Zheng MJ, Zhang LD, Li GH, Zhang XY, Wang XF (2001) Appl Phys Lett 79:839

    Article  CAS  Google Scholar 

  12. Piao Y, Lim H, Ghang JY, Lee WY, Kim H (2005) Electrochim Acta 50:2997

    Article  CAS  Google Scholar 

  13. Khan HR, Petrikowski K (2002) Mater Sci Eng C19:345

    CAS  Google Scholar 

  14. Bartlett PN, Gollas B, Guerin S, Marwan J (2002) J Phys Chem Chem Phys 4:3835

    CAS  Google Scholar 

  15. Nandharkumar I, Elliott JM, Attard GS (2001) Chem Mater 13:3840

    Article  Google Scholar 

  16. Elliott J, Attard GS, Bartlett PN, Coleman NRB, Merckel DAS, Owen JR (1999) Chem Mater 11:3602

    Article  CAS  Google Scholar 

  17. Masuda H, Fukada K (1995) Science 268:1466

    Article  CAS  Google Scholar 

  18. Attard GS, Leclerc SAA, Maniguet S, Russel AE, Nandharkumar I, Gollas BR, Bartlett PN (2001) Microporous Mesoporous Mater 44–45:159

    Article  Google Scholar 

  19. Nelson PA, Elliott JM, Attard GS, Owen JR (2002) Chem Mater 14:524

    Article  CAS  Google Scholar 

  20. Kossyrev PA, Yin A, Cloutier SG, Cardimona DA, Huang D, Alsing PM, Xu JM (2005) Nano Lett 5:1978

    Article  CAS  Google Scholar 

  21. Ozbay E (2006) Science 311:189

    Article  CAS  Google Scholar 

  22. Whitehead AH, Elliott JM, Owen JR, Attard GS (1999) Chem Commun (Camb) 4:331

    Article  Google Scholar 

  23. Doshi DA, Gibaud A, Goletto V, Lu M, Gerung H, Ocko B, Han SM, Brinker CJ (2003) J Am Chem Soc 125:11646

    Article  CAS  Google Scholar 

  24. Zečević SK, Zotović JB, Gojković SL, Radmilović V (1998) J Electroanal Chem 448:145

    Google Scholar 

  25. Yamauchi Y, Yokoshima T, Momma T, Osaka T, Kuroda K (2004) J Mater Chem 14:2935

    Article  CAS  Google Scholar 

  26. Alves VA, Paquim AMC, Cavaleiro A, Brett CMA (2005) Corros Sci 47:2871

    Article  CAS  Google Scholar 

  27. Flitt HJ, Schweinsberg DP (2005) Corros Sci 47:2125

    Article  CAS  Google Scholar 

  28. Maji BC, Das CM, Krishnan M, Ray RK (2006) Corros Sci 48:937

    Article  CAS  Google Scholar 

  29. Galvele JR (2005) Corros Sci 47:3053

    Article  CAS  Google Scholar 

  30. Song SG, Ling Z, Placido F (2005) Mater Res Bull 40:1081

    Article  CAS  Google Scholar 

  31. Ma HY, Yang C, Chen SH, Jiao YL, Huang SX, Li DG, Luo JL (2003) Electrochim Acta 48:4277

    Article  CAS  Google Scholar 

  32. Rehim SSAE, Hassan HH, Amin MA (2002) Appl Phys Sci 187:279

    CAS  Google Scholar 

  33. Nigam AK, Balasubramaniam R, Bhargava S, Baligidad RG (2006) Corros Sci 48:1666

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Deutsche Forschungsgemeinschaft and the Land Sachsen-Anhalt financially supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wieland Schäfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foyet, A., Hauser, A. & Schäfer, W. Double template electrochemical deposition and characterization of NiCo and NiCu alloys nanoparticles and nanofilms. J Solid State Electrochem 12, 47–55 (2008). https://doi.org/10.1007/s10008-007-0332-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-007-0332-2

Keywords

Navigation