Skip to main content

Advertisement

Log in

Effects of tetrabutylammonium hydrogen sulfate as an electrolyte additive on the electrochemical behavior of lead acid battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Tetrabutyl ammonium hydrogen sulfate is an ion-paring reagent that has similar properties with ionic liquid. Ionic liquids belong to new branch of salts with unique properties that have ever increasing applications in electrochemical systems especially lithium-ion batteries. For the first time, the effects of tetrabutylammonium hydrogen sulfate (TBAHS) as an electrolyte additive in battery’s electrolyte was studied on the hydrogen and oxygen evolution overpotential and anodic layer formation on lead–antimony–tin grid alloy of lead acid battery by using cyclic voltammetry and linear sweep voltammetry in aqueous sulfuric acid solution. The grid surface morphology after cyclic redox reaction was studied by using scanning electron microscopy. The results show that, by increasing TBAHS concentration in the electrolyte, hydrogen and oxygen overpotential were increased, and so the crystalline structure of PbSO4 layer changed. Also, cyclic voltammogram on carbon–PbO paste electrode shows that with presence of TBAHS in the electrolyte, oxidation and reduction peak current intensively increased and peak potential for oxidation and reduction of PbO were dependent on TBAHS concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn, vol. 23, p 1

  2. Crompton TR (2000) Battery reference book, 3rd edn, vol. 18, p. 5

  3. Francia C, Maja M, Spinelli P (2001) J Power Sources 95:119

    Article  CAS  Google Scholar 

  4. Bui N, Mattesco P, Simon P, Steinmetz J, Rocca E (1997) J Power Sources 67:61

    Article  CAS  Google Scholar 

  5. Hibbins SG, Timpano FA, Zuliani DJ (1996) US Patent 5,547,634

  6. Rezaei B, Damiri S (2005) J Solid State Electrochem 9:590

    Article  CAS  Google Scholar 

  7. Zhong S, Liu HK, Dou SX, Skyllas-Kazacos M (1996) J Power sources 59:123

    Article  CAS  Google Scholar 

  8. Pavlov D (1993) J Power Sources 42:345

    Article  CAS  Google Scholar 

  9. Garche J, Doring H, Wiesener K (1991) J Power Sources 33:213

    Article  CAS  Google Scholar 

  10. Badawy WA, El-Egamy SS (1995) J Power Sources 55:11

    Article  CAS  Google Scholar 

  11. Voss E, Hullmeine U, Winsel A (1990) J Power Sources 30:33

    Article  CAS  Google Scholar 

  12. Ferreira AL (2001) J Power Sources 94:255

    Article  Google Scholar 

  13. Weighall MJ (2003) J Power Sources 116:219

    Article  CAS  Google Scholar 

  14. Ghasemi Z, Tizpar A (2006) Appl Surf Sci 252:3667

    Article  CAS  Google Scholar 

  15. Dietz H, Hoogestraat G, Laibach S, von Borstel D, Wiesener K (1995) J Power Sources 53:359

    Article  CAS  Google Scholar 

  16. Ohno H (2005) Electrochemical aspects of ionic liquids. Wiley, New York

    Google Scholar 

  17. Sakaebe H, Matsumoto H, Tatsumi K (2007) Electrochim Acta 53:1048

    Article  CAS  Google Scholar 

  18. Ishikawa M, Sugimoto T, Kikuta M, Ishiko E, Kono M (2006) J Power Sources 162:658

    Article  CAS  Google Scholar 

  19. Markevich E, Baranchugov V, Aurbach D (2006) Electrochem Commun 8:1331

    Article  CAS  Google Scholar 

  20. Balducci A, Bardi U, Caporali S, Mastragostino M, Soavi F (2004) Electrochem Commun 6:566

    Article  CAS  Google Scholar 

  21. Dai Q, Menzies DB, MacFarlane DR, Batten SR, Forsyth S, Spiccia L, Cheng YB, Forsyth M (2006) C R Chimie 9:617

    CAS  Google Scholar 

  22. De Souza RF, Padilha JC, Gonc_alves RS, Dupont J (2003) Electrochem Commun 5:728

    Article  Google Scholar 

  23. Upreti VV, Khurana M, Cox DS, Eddington ND (2006) J Chromatography B 831:156

    Article  CAS  Google Scholar 

  24. Vanerkova D, Jandera P, Hrabica J (2007) J Chromatography A 1143:112

    Article  CAS  Google Scholar 

  25. Yang X, Hu Z, Yung Chan S, Cher Goh B, Duan W, Chan E, Zhou S (2005) J Chromatography B 821:221

    Article  CAS  Google Scholar 

  26. Liu B, Hu XL, Liu J, Zhao YD, Huang ZL (2007) Tetrahedron Lett 48:5958

    Article  CAS  Google Scholar 

  27. Tewari N, Dwivedi N, Tripathi RP (2004) Tetrahedron Lett 45:9011

    Article  CAS  Google Scholar 

  28. Hirasawa T, Sasaki K, Taguchi M, Kanecho H (2000) J Power Sources 85:44

    Article  CAS  Google Scholar 

  29. Babic R, Melikos-Hukoric M, Lajqy N, Brinic S (1994) J Power Sources 52:17

    Article  CAS  Google Scholar 

  30. Rusin AI (1987) Modern technology of lead-acid batteries. Energiya, Leningrad, p 182

    Google Scholar 

  31. Culpin B, Rand DAJ (1991) J Power Sources 36:415

    Article  CAS  Google Scholar 

  32. Pavlov D (1968) Electrochim Acta 13:2051

    Article  CAS  Google Scholar 

  33. Pavlov D, Popova R (1970) Electrochim Acta 15:1483

    Article  CAS  Google Scholar 

  34. Ruetschi P (1973) J Electrochem Soc 120:331

    Article  CAS  Google Scholar 

  35. Sharpe TF (1977) J Electrochem Soc 124:168

    Article  CAS  Google Scholar 

  36. Hampson NA, Kelly S, Peters K (1980) J Appl Electrochem 10:91

    Article  CAS  Google Scholar 

  37. Ijomah MN (1987) J Electrochem Soc 134:1960

    Article  Google Scholar 

  38. Webster S, Mitchell PJ, Hampson NA, Dyson DI (1986) J Electrochem Soc 133:137

    Article  CAS  Google Scholar 

  39. Pavlov D, Monahov B (1991) J Electroanal Chem 305:57

    Article  CAS  Google Scholar 

  40. Pavlov D, Monahov B (1987) J Electroanal Chem 218:135

    Article  CAS  Google Scholar 

  41. Gaad Allah AG, El-Rahman HAA, Salih SA, El-Galil MA (1992) J Appl Electrochem 22:571

    Article  Google Scholar 

  42. Guo Y, Chen J, Li L (1992) J Electrochem Soc 139:L–99

    Google Scholar 

  43. Brennan MPJ, Stirrup BN, Hampson NA (1974) J Appl Electrochem 4:497

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the Isfahan University of Technology Council and the Center of Excellency in Sensor and Green Chemistry for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Rezaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezaei, B., Taki, M. Effects of tetrabutylammonium hydrogen sulfate as an electrolyte additive on the electrochemical behavior of lead acid battery. J Solid State Electrochem 12, 1663–1671 (2008). https://doi.org/10.1007/s10008-008-0547-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0547-x

Keywords

Navigation