Skip to main content
Log in

The effect of ‘crystallinity’ and structural disorder on the electrochemical performance of substituted nickel hydroxide electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

βbc-Nickel hydroxide exhibit non-uniform broadening reflections in their PXRD pattern due to the presence of structural disorder. βbc-Nickel hydroxide electrodes with smaller crystallite size and structural disorder reversibly exchanges 0.9e/Ni. Co/Zn/Ca/Cd-substituted βbc-nickel hydroxide samples also display non-uniform broadening of reflections in their powder X-ray diffraction patterns with smaller crystallite size and exchanges 0.7–0.8e/Ni. Hydrothermal treatment of βbc-nickel hydroxide slurry at 170 °C results in an ordering of reflections in their powder X-ray diffraction pattern with an increased crystallite size. Crystalline β-nickel hydroxide electrode reversibly exchanges 0.3–0.4e/Ni. Hydrothermal-treated Co/Zn/Ca/Cd-substituted βbc-nickel hydroxide slurries at 170 °C display sharp reflections with similar crystallite size and electrochemical activities as that of crystalline β-nickel hydroxide. This clearly demonstrates that partial substitution of Co/Zn/Ca/Cd in the nickel hydroxide matrix does not show any dramatic improvement in their electrochemical activity at 25–30 °C. Structural disordered material with smaller crystallite size delivers electrochemical activity close to theoretical capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Falk SU, Salkind AJ (1969) Alkaline storage batteries. Wiley, New York

    Google Scholar 

  2. Faure C, Delmas C, Fouassier C (1991) J Power Sources 35:279

    Article  CAS  Google Scholar 

  3. Oswald HR, Asper R (1977) In: Lieth RMA (ed) In bivalent metal hydroxides, vol 1. D Reidel Publishing, Holland, p 71

    Google Scholar 

  4. Bode H, Dehmelt K, Witte J (1966) Electrochim Acta 11:1079

    Article  CAS  Google Scholar 

  5. Audemer A, Delahaye-Vidal A, Farhi R, Sa-Epee N, Tarascon J-M (1997) J Electrochem Soc 144:2614

    Article  CAS  Google Scholar 

  6. Jayashree RS, Kamath PV, Subbanna GN (2000) J Electrochem Soc 147:2029

    Article  CAS  Google Scholar 

  7. Hui L, Yunchang D, Jiongliang Y, Zeyun W (1995) J Power Sources 57:137

    Article  CAS  Google Scholar 

  8. Ramesh TN, Jayashree RS, Kamath PV (2003) J Electrochem Soc 150:520

    Article  Google Scholar 

  9. Bernard R, Randell C, Tye FL (1981) Power sources, vol. 8. Academic, London, p 401

    Google Scholar 

  10. Ramesh TN, Kamath PV, Shivakumara C (2005) J Electrochem Soc 152:806

    Article  Google Scholar 

  11. Tessier C, Faure C, Guerlou-Demourgues L, Denage C, Nabias G, Delmas C (2002) J Electrochem Soc 149:1136

    Article  Google Scholar 

  12. Constantin DM, Rus EM, Oniciu L, Ghergari L (1988) J Power Sources 74:188

    Article  Google Scholar 

  13. Oshitani M, Sasaki Y, Takashima K (1984) J Power Sources 12:219

    Article  CAS  Google Scholar 

  14. Pickett DF, Maloy JT (1978) J Electrochem Soc 125:1026

    Article  CAS  Google Scholar 

  15. Pralong V, Chabre Y, Delahaye-Vidal A, Tarascon J-M (2002) Solid State Ionics 147:73

    Article  CAS  Google Scholar 

  16. Oshitani M, Yufu H, Takashima K, Tsuji S, Matasumaru Y (1989) J Electrochem Soc 136:1590

    Article  CAS  Google Scholar 

  17. Pralog V, Delahaye-Vidal A, Beaudoin B, Gerand B, Leriche JB, Tarascon J-M (2000) J Electrochem Soc 147:1306

    Article  Google Scholar 

  18. Fierro C, Zallen A, Koch J, Fetchenko MA (2006) J Electrochem Soc 153:492

    Article  Google Scholar 

  19. Jun L, Rong L, Hang S (1999) J Power Sources 79:86

    Article  Google Scholar 

  20. Yuan AB, Chang SA, Zhang JQ, Cao CN (1999) J Power Sources 77:178

    Article  CAS  Google Scholar 

  21. Yuan AB, Xu NX (2001) J Appl Electrochem 31:45

    Google Scholar 

  22. Oshitani M, Watada M, Shodai K, Kodama M (2001) J Electrochem Soc 148:67

    Article  Google Scholar 

  23. Ramesh TN, Kamath PV, Shivakumara C (2006) Acta Crystallogr B 62:530

    Article  CAS  Google Scholar 

  24. Cornilsen BC, Shan X, Loyselle PL (1990) J Power Sources 29:453

    Article  CAS  Google Scholar 

  25. Bernard MC, Cortes R, Keddam M, Takenouti H, Bernard P, Senyarich S (1996) J Power Sources 63:247

    Article  CAS  Google Scholar 

  26. Delmas C, Tessier C (1997) J Mater Chem 7:1439

    Article  CAS  Google Scholar 

  27. Warren BE, Bodenstein P (1966) Acta Crystallogr 20:602

    Article  CAS  Google Scholar 

  28. Rajamathi M, Kamath PV, Seshadri R (2000) J Mater Chem 10:503

    Article  CAS  Google Scholar 

  29. Radha AV, Kamath PV, Shivakumara C (2007) Acta Crystallogr B 63:243

    Article  CAS  Google Scholar 

  30. Bookin AS, Drits VA (1993) Clays Clay Miner 41:551

    Article  CAS  Google Scholar 

  31. Faure C, Delmas D, Willmann P (1991) J Power Sources 35:249

    Article  CAS  Google Scholar 

  32. Kamath PV, Dixit M, Indira L, Shukla AK, Kumar VG, Munichandraiah N (1994) J Electrochem Soc 141:2956

    Article  CAS  Google Scholar 

  33. Audemer A, Delahaye A, Farhi R, Sac-Epée N, Tarascon J-M (1997) J Electrochem Soc 144:2614

    Article  CAS  Google Scholar 

  34. Tessier C, Guerlou-Demourgues L, Faure C, Basterreix M, Nabias G, Delmas C (2000) Solid State Ionics 133:11

    Article  CAS  Google Scholar 

  35. Casas-Cabanas M, Rodriguez-Carvajal J, Canales-Vazques J, Rose Placin M (2006) J Mater Chem 16:2925

    Article  CAS  Google Scholar 

  36. Deabate S, Henn F, Devautour S, Giuntini JC (2003) J Electrochem Soc 150:23

    Article  Google Scholar 

Download references

Acknowledgment

T.N.R thanks the Council of Scientific and Industrial Research, GOI, for the award of Senior Research Fellowship (NET) and Research Associate fellowship. P.V.K. thanks the Department of Science and Technology, Government of India (GOI), for financial support. He is a recipient of the Ramanna Fellowship. Authors thank the Solid State and Structural Chemistry Unit of the Indian Institute of Science for powder X-ray diffraction facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, T.N., Vishnu Kamath, P. The effect of ‘crystallinity’ and structural disorder on the electrochemical performance of substituted nickel hydroxide electrodes. J Solid State Electrochem 13, 763–771 (2009). https://doi.org/10.1007/s10008-008-0591-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0591-6

Keywords

Navigation