Skip to main content
Log in

Electrodeposited magnetite with large magnetoresistive response at room temperature and low magnetic fields

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Iron oxide layers were obtained by electrodeposition method on Cu substrates. The electrolyte containing Fe2(SO4)3, NaOH, and Triethanolamine was stirred at a temperature of 65 °C and the depositions were performed potentiostatically in a conventional three electrode cell at a potential of −1.1 V vs SCE. Parallel magnetoresistance values of −6.2% at 3 kOe were obtained for measurements at room temperature. The magnetoresistive curves showed reduced hysteresis loop, temporal stability, and no saturation for the maximum applied magnetic field. Our results show that for the case of the granular magnetite that we grow, the AMR has opposite sign of that of 3d magnetic alloys. Allied to high values of resistivity, these properties are potentially adequate for the development of magnetic devices such as field sensors. Additional characterization was obtained by using scanning electron microscopy and vibrating sample magnetometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lui H, Jiang EY, Bai HL, Zheng RK, Wei HL, Zhang XX (2003) Appl Phys Lett 83:3531 doi:10.1063/1.1622440

    Article  Google Scholar 

  2. Hong JP, Lee SB, Jung YW, Lee JH, Yoon KS, Kim KW et al (2003) Appl Phys Lett 83:1590 doi:10.1063/1.1604466

    Article  CAS  Google Scholar 

  3. Mi WB, Shen JJ, Jiang EY, Bai HL (2007) Acta Mater 55:1919 doi:10.1016/j.actamat.2006.10.050

    Article  CAS  Google Scholar 

  4. Eerenstein W, Palstra TTM, Saxena SS, Hibma T (2002) Phys Rev Lett 88:2472041 doi:10.1103/PhysRevLett.88.247204

    Article  Google Scholar 

  5. Ogale SB, Ghosh K, Sharma RP, Greene RL, Ramesh R, Venkatesan T (1998) Phys Rev B 57:7823 doi:10.1103/PhysRevB.57.7823

    Article  CAS  Google Scholar 

  6. Bohra M, Venkataramani N, Prasad S, Kumar N, Misra DS, Sahoo SC et al (2007) J Magn Magn Mater 310:2242 doi:10.1016/j.jmmm.2006.10.822

    Article  CAS  Google Scholar 

  7. Kitamoto Y, Nakayama Y, Abe M (2000) J Appl Phys 87:7130 doi:10.1063/1.372953

    Article  CAS  Google Scholar 

  8. Nishimura K, Kohara Y, Kitamoto Y, Abe M (2000) J Appl Phys 87:7127 doi:10.1063/1.372952

    Article  CAS  Google Scholar 

  9. Terrier C, Abid M, Arm C, Serrano-Guisan S, Gravier L, Ansermet J-P (2005) J Appl Phys 98:086102 doi:10.1063/1.2099534

    Article  Google Scholar 

  10. Kothari HM, Kulp EA, Limmer SJ, Poizot P, Bohannan EW, Switzer JA (2006) J Mater Res 21:293 doi:10.1557/jmr.2006.0030

    Article  CAS  Google Scholar 

  11. Coey JMD, Chien CL (2003) MRS Bull 28:720

    CAS  Google Scholar 

  12. Coey JMD, Berkowitz AE, Balcells LL, Putris FF, Parker FT (1998) Appl Phys Lett 72:734 doi:10.1063/1.120859

    Article  CAS  Google Scholar 

  13. Margulies DT, Parker FT, Rudee ML, Spada FE, Chapman JN, Aitchison PR et al (1997) Phys Rev Lett 79:5162 doi:10.1103/PhysRevLett.79.5162

    Article  CAS  Google Scholar 

  14. Hibma T, Voogt FC, Niesen L, van der Heijden PAA, de Jonge WJM, Donkers JJTM et al (1999) J Appl Phys 85:5291 doi:10.1063/1.369857

    Article  CAS  Google Scholar 

  15. Zeng H, Black CT, Sandstrom RL, Rice PM, Murray CB, Sun S (2006) Phys Rev B 73:020402 doi:10.1103/PhysRevB.73.020402

    Article  Google Scholar 

  16. Wang W, Yu M, Batzill M, He J, Diebold U, Tang J (2006) Phys Rev B 73:124412

    Google Scholar 

  17. Lu ZL, Xu MX, Zou WQ, Wang S, Liu XC, Lin YB et al (2007) Appl Phys Lett 91:102508 doi:10.1063/1.2783191

    Article  Google Scholar 

  18. McGuire TR, Potter RI (1975) IEEE Trans Magn 11:1018 doi:10.1109/TMAG.1975.1058782

    Article  Google Scholar 

  19. Lehmann HW (1967) Phys Rev 163:488 doi:10.1103/PhysRev.163.488

    Article  CAS  Google Scholar 

  20. Chikazumi S (1997) Physics of ferromagnetism, 2nd edn. Oxford Science publications, New York

    Google Scholar 

  21. Ziese M, Blythe HJ (2000) J Phys Condens Matter 12:13 doi:10.1088/0953–8984/12/1/302

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present research was supported by FAPESC, CNPQ and CAPES (Brazil), CICyT (Spain) and MUNDIS project (EC). The authors wish to thank M. F. Alamini and D. Aragão for helping with the preparation of the electrodeposited layers at the LFFS/UFSC. RGD is currently receiving a post-doc stipend from CNPQ. JSC present address is Facultad de Quimica/Materiales, Universidad Autónoma de Querétaro, México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pasa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delatorre, R.G., da Silva, R.C., Cruz, J.S. et al. Electrodeposited magnetite with large magnetoresistive response at room temperature and low magnetic fields. J Solid State Electrochem 13, 843–847 (2009). https://doi.org/10.1007/s10008-008-0621-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0621-4

Keywords

Navigation