Skip to main content
Log in

Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nickel and nickel–copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) prepared by galvanostatic deposition were examined for their redox processes and electro-catalytic activities towards the oxidation of glucose in alkaline solutions. The methods of cyclic voltammetry (CV) and chronoamperometry (CA) were employed. The cyclic voltammogram of NiCu alloy demonstrates the formation of β/β crystallographic forms of the nickel oxyhydroxide under prolonged repetitive potential cycling in alkaline solution. It is also observed that the overpotential for O2 evolution increases for NiCu alloy modified electrode. In CV studies, NiCu alloy modified electrode yields significantly higher activity for glucose oxidation compared to Ni. The oxidation of glucose was concluded to be catalyzed through mediated electron transfer across the nickel hydroxide layer comprising of nickel ions of various valence states. The anodic peak currents show linear dependency with the square root of scan rate. This behavior is the characteristic of a diffusion-controlled process. Under the CA regime, the reaction followed a Cottrellian behavior, and the diffusion coefficient of glucose was found to be 1 × 10−5 cm2 s−1, in agreement with diffusion coefficient obtained in CV studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Essis LH, Beden B, Lamy C (1988) J Electroanal Chem 246:349. doi:10.1016/0022-0728(88)80171-2

    Article  Google Scholar 

  2. Katz E, Willner I, Kotlyar AB (1999) J Electroanal Chem 479:64. doi:10.1016/S0022-0728(99)00425-8

    Article  CAS  Google Scholar 

  3. Khoo SB, Yap MGS, Huang YL, Guo SX (1997) Anal Chim Acta 351:133. doi:10.1016/S0003-2670(97)00326-7

    Article  CAS  Google Scholar 

  4. Johnson DC, Weber SG, Bond AM, Wightman RM, Shoup RE, Krull IS (1986) Anal Chim Acta 180:187. doi:10.1016/0003-2670(86)80007-1

    Article  CAS  Google Scholar 

  5. Lei HW, Wu BL, Cha CS, Kita H (1995) J Electroanal Chem 382:103. doi:10.1016/0022-0728(94)03673-Q

    Article  Google Scholar 

  6. Bagotzky VS, Vassilyev YB (1964) Electrochim Acta 9:869. doi:10.1016/0013-4686(64)85038-6

    Article  Google Scholar 

  7. Bockris JO’M, Piersma BJ, Gileadi E (1964) Electrochim Acta 9:1329. doi:10.1016/0013-4686(64)87009-2

    Article  CAS  Google Scholar 

  8. Bea IT, Xing X, Liu CC, Yeager E (1990) J Electroanal Chem 284:335. doi:10.1016/0022-0728(90)85043-5

    Article  Google Scholar 

  9. Bae IT, Yeager E, Xing X, Liu CC (1991) J Electroanal Chem 309:131. doi:10.1016/0022-0728(91)87009-S

    Article  CAS  Google Scholar 

  10. Popovic KD, Markovic NM, Tripkovic AV, Adzic RR (1991) J Electroanal Chem 313:181. doi:10.1016/0022-0728(91)85179-S

    Article  CAS  Google Scholar 

  11. Zhao C, Shao C, Li M, Jiao K (2007) Talanta 71:1769. doi:10.1016/j.talanta.2006.08.013

    Article  CAS  Google Scholar 

  12. Morita M, Niwa O, Tou S, Watanabe N (1999) J Chromatogr A 837:17. doi:10.1016/S0021-9673(99)00047-3

    Article  CAS  Google Scholar 

  13. Wang J, Chen G, Chatrathi MP (2004) Electroanalysis 16:1603. doi:10.1002/elan.200302996

    Article  CAS  Google Scholar 

  14. Hilmi A, Luong JHT (2000) Anal Chem 72:4677. doi:10.1021/ac000524h

    Article  CAS  Google Scholar 

  15. Skou E (1977) Electrochim Acta 22:313. doi:10.1016/0013-4686(77)85079-2

    Article  CAS  Google Scholar 

  16. Colon LA, Dadoo R, Zare RN (1993) Anal Chem 65:476. doi:10.1021/ac00052a027

    Article  CAS  Google Scholar 

  17. Fleischmann M, Korinek K, Pletcher D (1972) J Chem Soc, Perkin Trans II 10:1396. doi:10.1039/p29720001396

    Article  Google Scholar 

  18. Luo P, Zhang F, Baldwin RP (1991) Anal Chim Acta 244:169. doi:10.1016/S0003-2670(00)82494-0

    Article  CAS  Google Scholar 

  19. Luo P, Prabhu SV, Baldwin RP (1990) Anal Chem 62:752. doi:10.1021/ac00206a021

    Article  CAS  Google Scholar 

  20. Miller B (1969) J Electrochem Soc 116:1675. doi:10.1149/1.2411657

    Article  CAS  Google Scholar 

  21. Marioli J, Luo P, Kuwana T (1993) Anal Chim Acta 282:571. doi:10.1016/0003-2670(93)80122-2

    Article  CAS  Google Scholar 

  22. Marioli J, Kuwana T (1993) Electroanalysis 5:11. doi:10.1002/elan.1140050104

    Article  CAS  Google Scholar 

  23. Khulbe KC, Mann RS, Manoogian A (1980) Chem Rev 80:417. doi:10.1021/cr60327a003

    Article  CAS  Google Scholar 

  24. El-Shafei AA (1999) J Electroanal Chem 471:89. doi:10.1016/S0022-0728(99)00235-1

    Article  CAS  Google Scholar 

  25. Briggs GWD, Snodin PR (1982) Electrochim Acta 27:565. doi:10.1016/0013-4686(82)85041-X

    Article  CAS  Google Scholar 

  26. Hahn F, Beden B, Croissant MJ, Lamy C (1986) Electrochim Acta 31:335. doi:10.1016/0013-4686(86)80087-1

    Article  CAS  Google Scholar 

  27. Desilvestro J, Corrigan DA, Weaver MJ (1988) J Electrochem Soc 135:885. doi:10.1149/1.2095818

    Article  CAS  Google Scholar 

  28. Barnard R, Randell CF (1983) J Appl Electrochem 13:89. doi:10.1007/BF00615892

    Article  CAS  Google Scholar 

  29. Conway BE, Liu TC (1987) J Chem Soc, Faraday Trans 83:1063. doi:10.1039/f19878301063

    Article  CAS  Google Scholar 

  30. Druska P, Strehblow HH, Golledge S (1996) Corros Sci 37:835. doi:10.1016/0010-938X(96)00170-9

    Article  Google Scholar 

  31. Luo P, Prabhu SV, Baldwin RP (1990) Anal Chem 62:752. doi:10.1021/ac00206a021

    Article  CAS  Google Scholar 

  32. Bode H, Dehmelt K, Witte J (1966) Electrochim Acta 11:1079. doi:10.1016/0013-4686(66)80045-2

    Article  CAS  Google Scholar 

  33. Schrebler Guzman RS, Vilche JR, Arvia AJ (1978) J Electrochem Soc 125:1578. doi:10.1149/1.2131247

    Article  Google Scholar 

  34. Chen J, Bradhurst DH, Dou SX, Liu HK (1999) J Electrochem Soc 146:3606. doi:10.1149/1.1392522

    Article  CAS  Google Scholar 

  35. Singh DJ (1998) J Electrochem Soc 145:116. doi:10.1149/1.1838222

    Article  CAS  Google Scholar 

  36. Oshitani M, Watada M, Lida T (1995) In: Bennett PD, Sakai T (ed) Hydrogen and metal hydride batteries, The Electrochemical Society Proceedings Series. Pennington, NJ

  37. Luo PF, Kuwana T, Paul DK, Sherwood PMA (1996) Anal Chem 68:3330. doi:10.1021/ac960236e

    Article  CAS  Google Scholar 

  38. Bard AJ, Faulkner LR (2001) In: Bard AJ (ed) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  39. Laviron E (1979) J Electroanal Chem 101:19. doi:10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  40. Heli H, Jafarian M, Mahjani MG, Gobal F (2004) Electrochim Acta 49:4999. doi:10.1016/j.electacta.2004.06.015

    Article  CAS  Google Scholar 

  41. Mho S, Johnson DC (2001) J Electroanal Chem 500:524. doi:10.1016/S0022-0728(00)00277-1

    Article  CAS  Google Scholar 

  42. Nicholson RS, Shain I (1964) Anal Chem 36:706. doi:10.1021/ac60210a007

    Article  CAS  Google Scholar 

  43. Harrison JA, Khan ZA (1970) J Electroanal Chem 28:131. doi:10.1016/S0022-0728(70)80288-1

    Article  CAS  Google Scholar 

  44. Bard AJ, Faulkner LR (2001) In: Bard AJ (ed) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  45. Torto N, Ruzgas T, Gorton L (1999) J Electroanal Chem 464:252. doi:10.1016/S0022-0728(99)00041-8

    Article  CAS  Google Scholar 

  46. Pariente F, Lorenzo E, Tobalina F, Abruna HD (1995) Anal Chem 67:3936. doi:10.1021/ac00117a019

    Article  CAS  Google Scholar 

  47. Goyal RN, Gupta VK, Bachheti N (2007) Anal Chim Acta 597:82. doi:10.1016/j.aca.2007.06.017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jafarian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafarian, M., Forouzandeh, F., Danaee, I. et al. Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode. J Solid State Electrochem 13, 1171–1179 (2009). https://doi.org/10.1007/s10008-008-0632-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0632-1

Keywords

Navigation