Skip to main content
Log in

Improvement of high-voltage cycling behavior of Li(Ni1/3Co1/3Mn1/3)O2 cathodes by Mg, Cr, and Al substitution

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

To improve the electrochemical properties of Li[Ni1/3Co1/3Mn1/3]O2 at high charge end voltage (4.6 V), a series of the mixed transition metal compounds, Li(Ni1/3Co1/3 − x Mn1/3M x )O2 (M = Mg, Cr, Al; x = 0.05), were synthesized via hydroxide coprecipitation method. The effects of doping Mg, Cr, and Al on the structure and the electrochemical performances of Li[Ni1/3Co1/3Mn1/3]O2 were compared by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge–discharge tests, and electrochemical impedance spectroscopy. The XRD results show that all the samples keep layered structures with R3m space group as the Li[Ni1/3Co1/3Mn1/3]O2. SEM images show that all the compounds have spherical shapes and the Cr-doped sample has the largest particle size. Furthermore, galvanostatic charge–discharge tests confirm that the Cr-doped electrode shows improved cycling performance than the undoped material. The capacity retention of Li(Ni1/3Co1/3 − 0.05Mn1/3Cr0.05)O2 is 97% during 50 cycles at 2.8∼4.6 V. The improved cycling performance at high voltage can be attributed to the larger particle size and the prevention of charge transfer resistance (R ct) increase during cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mizushima K, Jones PC, Wiseman PJ et al (1980) Mater Res Bull 17:783 doi:10.1016/0025-5408(80)90012-4

    Article  Google Scholar 

  2. Nagaura T, Tozawa K (1990) Prog Batteries Sol Cells 9:20

    Google Scholar 

  3. Chen Y, Wang GX, Konstantinov K et al (2003) J Power Sources 119:184 doi:10.1016/S0378-7753(03)00176-9

    Article  Google Scholar 

  4. Ohzuku T, Makimura Y (2001) Chem Lett 30:642 doi:10.1246/cl.2001.642

    Article  Google Scholar 

  5. Koyama Y, Tanaka I, Adachi H et al (2003) J Power Sources 119:644 doi:10.1016/S0378-7753(03)00194-0

    Article  Google Scholar 

  6. Patoux S, Doeff MM (2004) Electrochem Commun 6:767 doi:10.1016/j.elecom.2004.05.024

    Article  CAS  Google Scholar 

  7. Andersson AM, Abraham DP, Haasch R et al (2002) J Electrochem Soc 149:A1358 doi:10.1149/1.1505636

    Article  CAS  Google Scholar 

  8. Amine K, Chen CH, Liu J et al (2001) J Power Sources 97:684 doi:10.1016/S0378-7753(01)00701-7

    Article  Google Scholar 

  9. Scrosati B (1995) Nature 373:557 doi:10.1038/373557a0

    Article  CAS  Google Scholar 

  10. Jouanneau J, Ekerman KW, Krause LJ et al (2003) J Electrochem Soc 150:A1637 doi:10.1149/1.1622956

    Article  CAS  Google Scholar 

  11. Kim JH, Yoon CY, Sun YK (2003) J Electrochem Soc 150:A158 doi:10.1149/1.1560639

    Article  Google Scholar 

  12. Li D, Muta T, Zhang L et al (2004) J Power Sources 132:150 doi:10.1016/j.jpowsour.2004.01.016

    Article  CAS  Google Scholar 

  13. Luo X, Wang X, Liao L, Gamboa S et al (2006) J Power Sources 158:654 doi:10.1016/j.jpowsour.2005.09.047

    Article  CAS  Google Scholar 

  14. Ohzuku T, Ueda A, Nagayama M (1993) J Electrochem Soc 140:1862 doi:10.1149/1.2220730

    Article  CAS  Google Scholar 

  15. Liu ZL, Yu AS, Lee JY (1999) J Power Sources 81:416 doi:10.1016/S0378-7753(99)00221-9

    Article  Google Scholar 

  16. Hu SK, Chou TC, Hwang BJ et al (2006) J Power Sources 160:1287 doi:10.1016/j.jpowsour.2006.02.005

    Article  CAS  Google Scholar 

  17. Oh SW, Park SH, Park CW et al (2004) Solid State Ion 171:167 doi:10.1016/j.ssi.2004.04.012

    Article  CAS  Google Scholar 

  18. Yabuuchi N, Ohzuku T (2003) J Power Sources 119:171 doi:10.1016/S0378-7753(03)00173-3

    Article  Google Scholar 

  19. Luo X, Wang X, Liao L et al (2006) J Power Sources 161:601 doi:10.1016/j.jpowsour.2006.03.090

    Article  CAS  Google Scholar 

  20. Ye SY, Xia YY, Zhang PW (2007) J Solid State Electrochem 11:805 doi:10.1007/s10008-006-0226-8

    Article  CAS  Google Scholar 

  21. Myung ST, Lee MH, Komaba S et al (2005) Electrochim Acta 50:4800 doi:10.1016/j.electacta.2005.02.034

    Article  CAS  Google Scholar 

  22. Sun YK, Han JM, Myung ST et al (2006) Electrochem Commun 8:821 doi:10.1016/j.elecom.2006.03.040

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kening Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Sun, K., Zhang, N. et al. Improvement of high-voltage cycling behavior of Li(Ni1/3Co1/3Mn1/3)O2 cathodes by Mg, Cr, and Al substitution. J Solid State Electrochem 13, 1381–1386 (2009). https://doi.org/10.1007/s10008-008-0695-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0695-z

Keywords

Navigation