Skip to main content
Log in

Electrochemical and photoelectrochemical characterization of CuFeO2 single crystal

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

CuFeO2 single crystal, synthesized by the flux method, is a narrow band gap semiconductor crystallizing in the delafossite structure with a direct optical transition of 1.63 eV. The oxide exhibits a good chemical stability; the semi-logarithmic plot gave an exchange current density of 0.60 µA cm−2 in KCl (0.5 M) electrolyte. CuFeO2 shows p-type conductivity; the origin of acceptors Cu2+ results from oxygen insertion in the layered lattice where most of excess holes are trapped in surface-polaron states. The electrochemical study is confined in the (a,b) plane and reversible oxygen intercalation is evidenced from the intensity potential characteristics. The detailed photoelectrochemical studies have been reported for the first time on the single crystal. The photocurrent is ascribed to the transfer Cu+:3d3d. The capacitance measurement (C−2–V) shows a linear behavior from which a flat band potential of +0.54 VSCE and a density N A of 1.60 × 1018 cm−3 were determined. The valence band, located at 5.33 eV below vacuum, is made up of Cu-3d orbital typical of delafossite oxides. The Nyquist plot shows a semicircle attributed to a capacitive behavior with a low density of surface states within the gap. The centre is localized below the real axis with an angle of 16.2° ascribed to a constant phase element (CPE), a single barrier of the junction CuFeO2/electrolyte and one relaxation time of the electrical equivalent circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Calculated from the lattice constant (0.3885 nm) of iron crystallizing in a face centered cubic lattice.

  2. χ is the geometrical mean of EA values of the constituent atoms, \(\chi \left( {{\text{CuFeO}}_2 } \right) = \left\{ {\left( {\chi {\text{Cu}}} \right)\left( {\chi {\text{Fe}}} \right)\left( {\chi {\text{O}}} \right)^2 } \right\}^{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-\nulldelimiterspace} 4}} \). For a neutral atom, χ is given by \({{\left( {A_f + I_1 } \right)} \mathord{\left/ {\vphantom {{\left( {A_f + I_1 } \right)} 2}} \right. \kern-\nulldelimiterspace} 2}\) where A f is the electron affinity and I 1 the first ionization energy, the values were taken from [23].

References

  1. Hu CC, Nian JN, Teng H (2008) Sol Energy Mater Sol Cells 92:1071. doi:10.1016/j.solmat.2008.03.012

    Article  CAS  Google Scholar 

  2. Tai Y-W, Chen J-S, Yang C-C, Wan B-Z (2004) Catal Today 90:95. doi:10.1016/j.cattod.2004.04.054

    Article  Google Scholar 

  3. Gondal MA, Hameed A, Yamani ZH, Arfaj A (2004) Chem Phys Lett 385:111. doi:10.1016/j.cplett.2003.12.066

    Article  CAS  Google Scholar 

  4. Claverie J, Campet G, Conte D, Le flem G, Hagenmuller P (1983) Phys Status Solidi (a) 77:603. doi:10.1002/pssa.2210770224

    Article  CAS  Google Scholar 

  5. Saadi S, Bouguelia A, Derbal A, Trari M (2007) J photochem photobiol 187:97

    Article  CAS  Google Scholar 

  6. Elazhari M, Ammar A, Elaatmani M, Trari M, Doumerc JP (1997) Eur J Solid State Inorg Chem 34:503

    CAS  Google Scholar 

  7. Prewitt CT, Shannon RD, Rogers DB (1971) Inorg Chem 10:719. doi:10.1021/ic50098a012

    Article  Google Scholar 

  8. Younsi M, Aider A, Bouguelia A, Trari M (2005) Sol Energy 78:574. doi:10.1016/j.solener.2004.01.012

    Article  CAS  Google Scholar 

  9. Omeiri S, Gabès Y, Bouguelia A, Trari M (2008) J Electroanal Chem 614:31. doi:10.1016/j.jelechem.2007.11.002

    Article  CAS  Google Scholar 

  10. Trari M, Bouguelia A, Bessekhouad Y (2006) Sol Energy Mater Sol Cells 90:190. doi:10.1016/j.solmat.2005.03.003

    Article  CAS  Google Scholar 

  11. Doumerc JP, Wichainchai A, Ammar A, Pouchar M, Hagenmuller P (1986) Mater Res Bull 121:745. doi:10.1016/0025-5408(86)90155-8

    Article  Google Scholar 

  12. Zhao TR, Takei H (1997) Mater Res Bull 32:1377. doi:10.1016/S0025-5408(97)00126-8

    Article  CAS  Google Scholar 

  13. Dordor P, Chaminade JP, Wichainchai A, Marquestaut E, Doumerc JP, Pouchard P, Hagenmuller P (1988) J Solid State Chem 75:105. doi:10.1016/0022-4596(88)90307-6

    Article  CAS  Google Scholar 

  14. Cubicciotti D (1988) NACE 44:875

    CAS  Google Scholar 

  15. Mugnier E, Barnabé A, Tailhades P (2006) Solid State Ion 177:607. doi:10.1016/j.ssi.2005.11.026

    Article  CAS  Google Scholar 

  16. Ong KP, Bai K, Wu P (2008) J Alloy Comp 449(1-2):366. doi:10.1016/j.jallcom.2006.01.141

    Article  CAS  Google Scholar 

  17. Trari M, Topfer J, Dordor P, Grenier JC, Pouchard M, Doumerc JP (2005) J Solid State Chem 178:2751. doi:10.1016/j.jssc.2005.06.009

    Article  CAS  Google Scholar 

  18. Grenier JC, Wattiaux A, Lagueyte N, Park JC, Marquestaut E, Etourneau J, Pouchard M (1991) Physica C 173:139. doi:10.1016/0921-4534(91)90360-B

    Article  CAS  Google Scholar 

  19. Tauc J (1974) Amorphous and liquid semiconductors. Plenum, London

    Google Scholar 

  20. Pollert E, Hejtmaneck J, Doumerc JP, Claverie J, Hagenmuller P (1983) J Phys Chem Solids 44:273. doi:10.1016/0022-3697(83)90095-1

    Article  CAS  Google Scholar 

  21. Xia S-J, Zhou W-F (1995) Electrochim Acta 40:175. doi:10.1016/0013-4686(94)00280-E

    Article  CAS  Google Scholar 

  22. Butler MA, Ginley DS (1978) J Electrochem Soc 125:228. doi:10.1149/1.2131419

    Article  CAS  Google Scholar 

  23. Lide DR (1997, 1998) Handbook of chemistry and physics, 78th edn. McGraw-Hill, New York

    Google Scholar 

  24. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy, theory, experiment and applications, 2nd edn. Wiley, New York

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to M. Younsi for valuable suggestions regarding to the corrosion measurements. Financial support of this work was provided the Faculty of Chemistry (Algiers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Trari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omeiri, S., Bellal, B., Bouguelia, A. et al. Electrochemical and photoelectrochemical characterization of CuFeO2 single crystal. J Solid State Electrochem 13, 1395–1401 (2009). https://doi.org/10.1007/s10008-008-0703-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0703-3

Keywords

Navigation