Skip to main content
Log in

Study of capacitive properties in supercapacitor for copolymer of aniline with m-phenylenediamine

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The copolymers were synthesized with different molar ratios of m-phenylenediamine to aniline (R for short) by a chemical oxidation method. The products were first used as electrochemical activity materials of the supercapacitor. Capacitive behaviors of the prepared copolymers in 1 mol·L−1 H2SO4 electrolyte were examined by electrochemical impedance spectroscopy, cyclic voltammeter, and galvanostatic charge/discharge. The relationship of molar ratios with capacitive property of the prepared products was investigated too. The results showed that the product with R of 2:98 displayed better electrochemical properties than that of the other products. Compared with the synthesized polymer in the absence of m-phenylenediamine, the polymerized copolymer with R of 2:98 exhibited the initial specific capacitance value of 475 F·g−1, which increased by nearly 10.1% than that of the former at a current density of 200 mA·g−1 in 1 mol·L−1 H2SO4 electrolyte in the potential range of −0.3 to 0.7 V. The discharge specific capacitance value of the copolymer remained 300 F·g−1 after 1,000 cycles, exhibiting a good cycling performance and the structure stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Broughton JN, Brett M (2005) Electrochim Acta 50:4814. doi:10.1016/j.electacta.2005.03.006

    Article  CAS  Google Scholar 

  2. Yang HS, Zhou X, Zhang QW (2005) Wu li hua xue xue bao 21:414

    Google Scholar 

  3. Mi HY, Zhang XG (2008) J Power Sources 176:403. doi:10.1016/j.jpowsour.2007.10.070

    Article  CAS  Google Scholar 

  4. Palaniappan S, Lakshmi Devi S (2008) J Appl Polym Sci 107:1887–1892

    Article  CAS  Google Scholar 

  5. Zhang AQ, Cui CQ, Lee JY (1995) Synth Met 72:217. doi:10.1016/0379-6779(95)03304-1

    Article  CAS  Google Scholar 

  6. Sun L, Zhang HC (2005) Gao Fen Zi Xue Bao 2:219

    Google Scholar 

  7. Xiang CH, Xie QJ (2006) Synth Met 156:444. doi:10.1016/j.synthmet.2006.01.010

    Article  CAS  Google Scholar 

  8. Malinauskas A, Bron M, Holze R (1998) Synth Met 92:127. doi:10.1016/S0379-6779(98)80102-1

    Article  CAS  Google Scholar 

  9. Tang HQ, Kitani A, Maitani S, Maitani H (1995) Electrochim Acta 40:849. doi:10.1016/0013-4686(94)00370-G

    Article  CAS  Google Scholar 

  10. Lee MH, Luo YC, Do JS (2005) J Power Sources 146:340. doi:10.1016/j.jpowsour.2005.03.116

    Article  CAS  Google Scholar 

  11. Prokes J, Stejskal J, Krivka I, Tobolkova E (1999) Synth Met 102:1205. doi:10.1016/S0379-6779(98)01223-5

    Article  CAS  Google Scholar 

  12. Quillard S, Louarn G, Buisson JP, Boyer M, Lapkowski M, Pron A (1997) Synth Met 84:805. doi:10.1016/S0379-6779(96)04155-0

    Article  CAS  Google Scholar 

  13. Prokeš J, Trchová M, Hlavatá D, Stejskal (2002) Polym Degrad Stabil 78:393. doi:10.1016/S0141-3910(02)00193-3

    Article  Google Scholar 

  14. Tang J, Jing X, Wang B, Wang F (1988) Synth Met 24:231. doi:10.1016/0379-6779(88)90261-5

    Article  CAS  Google Scholar 

  15. Zhang H (2005) Modern organic spectrum analysis. Chemical industry press p 287

  16. Deng QY, (2007) Tutorial of spectrum analysis. science press, p 52

  17. Zhu HW (2005) Spectrum analysis of organic molecular structure. Chemical industry press, p 49

  18. Wei Y, Jang GW, Chan CC et al (1990) J Phys Chem 94:7716. doi:10.1021/j100382a073

    Article  CAS  Google Scholar 

  19. Wei Y, Tang X, Sun Y et al (1989) J Polym Sci Pol Chem 27:2385. doi:10.1002/pola.1989.080270720

    Article  CAS  Google Scholar 

  20. Wei Y, Hariharan R, Patel SA (1990) Macromolecules 23:758. doi:10.1021/ma00205a011

    Article  CAS  Google Scholar 

  21. Pouget JP, Jozefowicz ME, Epstein AJ, Tang X, MacDiarmid AG (1991) Macromolecules 24:779. doi:10.1021/ma00003a022

    Article  CAS  Google Scholar 

  22. Hu CC, Wang CC (2002) Electrochem Commun 4:554. doi:10.1016/S1388-2481(02)00371-5

    Article  CAS  Google Scholar 

  23. Malinauskas A (2001) Polymer (Guildf) 42:3957. doi:10.1016/S0032-3861(00)00800-4

    Article  CAS  Google Scholar 

  24. Stilwell DE, Park SM (1988) J Electrochem Soc 135:2254. doi:10.1149/1.2096248

    Article  CAS  Google Scholar 

  25. Stilwell DE, Park SM (1988) J Electrochem Soc 135:2491. doi:10.1149/1.2095364

    Article  CAS  Google Scholar 

  26. Genies EM, Lapkowski M, Penneau JF (1988) J Electroanal Chem 249:97. doi:10.1016/0022-0728(88)80351-6

    Article  CAS  Google Scholar 

  27. Mondal SK, Prasad KR, Munichandraiah N (2005) Synth Met 148:275. doi:10.1016/j.synthmet.2004.10.010

    Article  CAS  Google Scholar 

  28. Cao CN, Zhang JQ (2002) Introduction of electrochemistry impedance spectra. science press, p 135

  29. Lewandowski A, Galiński M (2004) J Phys Chem Solids 65:281. doi:10.1016/j.jpcs.2003.09.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong-Yu Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, JF., Wang, L., Lai, QY. et al. Study of capacitive properties in supercapacitor for copolymer of aniline with m-phenylenediamine. J Solid State Electrochem 13, 1803–1810 (2009). https://doi.org/10.1007/s10008-008-0779-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0779-9

Keywords

Navigation