Skip to main content
Log in

Corrosion behavior of Mg, AZ31, and AZ91 alloys in dilute NaCl solutions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Corrosion behavior of extruded Mg, extruded AZ31 alloy, and cast AZ91 alloy was investigated by electrochemical measurements in dilute NaCl solutions. Corrosion products and passivation films were analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. All specimens exhibit the corrosion and passivation zones in dilute NaCl solutions. The aluminum content and alloy microstructure influence the corrosion and passivation processes. AZ91 alloy shows the broadest passivation zone followed by AZ31 alloy and Mg. AZ91 alloy reveals a highest corrosion resistance, and preferential attack is located at the primary Mg phase. Its relatively fine β-phase (Mg17Al12) network and Al2O3/Al(OH)3 compounds produced on the passivation film are the main factors which limit the corrosion progress as compared with AZ31 alloy and Mg. The thick passivation product on AZ31 alloy is the key factor which restricts the corrosion attack in dilute solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Song GL, Atrens A (2005) Proceedings of 16th International Corrosion Congress. NACE International, Beijing

  2. Song GL, Atrens A, Wu XL, Zhang B (1998) Corros Sci 40:1769

    Article  CAS  Google Scholar 

  3. Song GL, Atrens A, Dargusch M (1998) Corros Sci 41:249

    Article  Google Scholar 

  4. Shi ZM, Song GL, Atrens A (2006) Corros Sci 48:1939

    Article  CAS  Google Scholar 

  5. Ballerini G, Bardi U, Bignucolo R, Ceraolo G (2005) Corros Sci 47:2173

    Article  CAS  Google Scholar 

  6. Baliga CB, Tsakiropoulos P, Jeynes C (1991) J Mater Sci 26:1497

    Article  CAS  Google Scholar 

  7. Loose WS (1946) In: Pidgeon LM, Mathes JC, Woldmen NE (eds) Metals handbook. ASM International, Materials Park, p 173

    Google Scholar 

  8. Ambat R, Aung NN, Zhou W (2000) J Appl Electrochem 30:865

    Article  CAS  Google Scholar 

  9. Pardo A, Merino MC, Coy AE, Arrabal R, Viejo F, Matykina E (2008) Corros Sci 50:823

    Article  CAS  Google Scholar 

  10. Pardo A, Merino MC, Coy AE, Viejo F, Arrabal R, FeliuJr S (2008) Electrochim Acta 53:7890

    Article  CAS  Google Scholar 

  11. Zhao CM, Liu M, Song GL, Atrens A (2008) Corros Sci 50:3168

    Article  CAS  Google Scholar 

  12. Wu GH, Fan Y, Atrens A, Zhai CQ, Ding WJ (2008) J Appl Electrochem 38:251

    Article  CAS  Google Scholar 

  13. Baliga CB, Tsakiropoulos P (1993) Mater Sci Technol 9:513

    CAS  Google Scholar 

  14. Song GL, Atrens A (1999) Adv Eng Mater 1:11

    Article  CAS  Google Scholar 

  15. Raman RKS (2004) Metall Mater Trans A 35:2525

    Article  Google Scholar 

  16. Zhang T, Shao Y, Meng G, Wang F (2007) Electrochim Acta 53:561

    Article  CAS  Google Scholar 

  17. Barchiche CE, Rocca E, Juers C, Hazan J, Steinmetz J (2007) Electrochim Acta 53:417

    Article  CAS  Google Scholar 

  18. Shinohara T, Wang L (2008) Proceedings of 54th Japan Society of Corrosion Engineering on Materials and Environments C310

  19. Wang L, Shinohara T, Zhang BP (2009) Corros Eng Jpn 58:105

    CAS  Google Scholar 

  20. Zhao MC, Liu M, Song GL, Atrens A (2008) Corros Sci 50:1939

    Article  CAS  Google Scholar 

  21. Zhao MC, Liu M, Song GL, Atrens A (2008) Adv Eng Mater 10:583

    Article  Google Scholar 

  22. Shi ZM, Liu M, Atrens A (2010) Corros Sci 52:579

    Article  CAS  Google Scholar 

  23. Uhlig HH, Revie RW (1985) Corrosion and corrosion control, 3rd edn. Wiley, New York

    Google Scholar 

  24. Lunder O, Lein JE, Hesjevik SM, Aune TKr, Nisancioglu K (1994) Mater Corros 45:331

    Article  CAS  Google Scholar 

  25. Lindstrӧm R, Johansson LG, Thompson GE, Skeldon P, Svensson JE (2004) Corros Sci 46:1141

    Article  Google Scholar 

  26. Lindstrӧm R, Johansson LG, Svensson JE (2003) Mater Corros 54:587

    Article  Google Scholar 

  27. Burstein GT, Organ RM (2005) Corros Sci 47:2932

    Article  CAS  Google Scholar 

  28. Bohni H, Uhlig HH (1969) J Electrochem Soc 116:906

    Article  Google Scholar 

  29. Hazzazi OA, Zaky AM, Amin MA, Abd El Rehim SS (2008) Int J Electrochem Sci 3:489

    CAS  Google Scholar 

  30. Nordlien JH, Ono S, Masuko N, Nisancioglu K (1997) Corros Sci 39:1397

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Hideo Iwai for his technical assistance in the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Shinohara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Shinohara, T. & Zhang, BP. Corrosion behavior of Mg, AZ31, and AZ91 alloys in dilute NaCl solutions. J Solid State Electrochem 14, 1897–1907 (2010). https://doi.org/10.1007/s10008-010-1020-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1020-1

Keywords

Navigation