Skip to main content
Log in

Inhibitor effect of sodium benzoate on the corrosion behavior of nanocrystalline pure iron metal in near-neutral aqueous solutions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanocrystalline iron coating was produced on carbon steel surface by pulse electrodeposition using citric acid bath. The grain size of a nanocrystalline surface was analyzed by X-ray diffractometry and scanning electron microscopy. The electrochemical behavior of nanocrystalline iron coating in the presence of sodium benzoate was evaluated in 30 mg l-1 NaCl + 70 mg l-1 Na2SO4 aqueous solution using potentiodynamic polarization curves and electrochemical impedance spectroscopy. The results were compared with that of the coarse-grained iron surface. The thermodynamic properties of the inhibitor adsorption were also determined. The results indicated that corrosion inhibition of sodium benzoate in near-neutral aqueous solution was increased as the grain size of iron was decreased from micro- to nanocrystalline surface. This was reported in terms of excess free energy of nanocrystalline surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gleiter H (1982) Mater Sci Eng 52:91–131

    Article  CAS  Google Scholar 

  2. Gleiter H (1995) Z Metall 86:78–83

    CAS  Google Scholar 

  3. Gleiter H (2000) Acta Mater 48:1–29

    Article  CAS  Google Scholar 

  4. Thiele E, Klemm R, Hollang L, Holste C, Schell N, Natter H, Hempelmann R (2005) Mater Sci Eng A 390:42

    Article  Google Scholar 

  5. Yang B, Vehoff H, Hempelmann R (2006) Int J Mater Res 97:1220

    CAS  Google Scholar 

  6. Lorenz WJ, Eichkon G (1965) J Electrochem Soc 112:1225

    Google Scholar 

  7. Lorenz WJ, Eichkon G, Bunsenges Ber (1966) Phys Chem 70:99

    CAS  Google Scholar 

  8. Eichkon G, Lorenz WJ, Albert L, Fischer H (1968) Electrochim Acta 13:183

    Article  Google Scholar 

  9. Eichkon G, Lorenz WJ (1968) Z Metalloberflache 22:102

    Google Scholar 

  10. Lorenz WJ (1968) Das elektrochemische Verhalten des aktiven Reineisens in sauren Lösungen. Universitat Karlsruhe, Habilitationsschrift

    Google Scholar 

  11. Youssef Kh MS, Koch CC, Fedkiw PS (2004) Corros Sci 46:51

    Article  Google Scholar 

  12. Afshari V, Dehghanian C (2009) Corros Sci 51:1844–1849

    Article  CAS  Google Scholar 

  13. Rofagha R, Langer R, El-Sherik AM (1991) Scripta Metall Mter 25:2867

    Article  CAS  Google Scholar 

  14. Rofagha R, Splinter SJ, Erb U (1994) Nanostruct Mater 4:69

    Article  CAS  Google Scholar 

  15. Barbucci A, Farne G, Mattaezzi P, Riccieri R, Cereisola G (1999) Corros Sci 41:463

    Article  CAS  Google Scholar 

  16. Kim SH, Aust KT, Erb U, Gonzalez F, Palumbo G (2003) Scripta Mater 48:1379

    Article  CAS  Google Scholar 

  17. Rozenfeld IL (1981) Corrosion Inhibitor. McGraw-Hill, New York

    Google Scholar 

  18. Cullity BD (1978) Elements of X-ray Diffraction, 2nd edn. Addison-Wesley, Reading, pp 281–285

    Google Scholar 

  19. Surayanarayana C, Mukhopadhayay D, Patanker SN, Froes FH (1992) J Mater Res 7:2114

    Article  Google Scholar 

  20. Balyanov A, Kutnyakova J, Amirkhanova NA (2004) Scripta Mater 51:225

    Article  CAS  Google Scholar 

  21. Czerwinski F, Li H, Megret M, Szpunar JA, Clark DG, Erb U (1997) Scripta Mater 37:1967

    Article  CAS  Google Scholar 

  22. Greer AL (1993) Mechanical properties and deformation behavior of materials having ultra-fine microstructures. Springer, New York, pp 53–77

    Google Scholar 

  23. Daniel MC, Astruc D (2004) Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  24. Lopez N, Norskov JK (2003) Abs Paper Am Chem Soc 225:U688–U688

    Google Scholar 

  25. Sommer WJ, Crne M, Weck M (2007) The ACS J Surf Colloids 23(24):11991–11995

    CAS  Google Scholar 

  26. Zhai S, Zhang Y, Shi X, Wu D, Sun YH, Shan Y, He MY (2004) Catal Lett 93:225–229

    Article  CAS  Google Scholar 

  27. Bowen P, Carry C (2002) Powder Technol 128:248–255

    Article  CAS  Google Scholar 

  28. Goujon C, Goeuriot P (2001) Mater Sci Eng A 315:180–188

    Article  Google Scholar 

  29. Nihara K (1991) J Cream Soc Jpn 99:974–982

    Google Scholar 

  30. Agrawal R, Namboodhiri TKG (1990) Corros Sci 30:37

    Article  CAS  Google Scholar 

  31. Ateya BG, Anadoli EEL, El-Nizamy FM (1984) Corros Sci 24:509

    Article  CAS  Google Scholar 

  32. Moretti G, Quartarone G, Tassan A, Zlngales A (1996) Electrochim Acta 41

  33. Nihara K, Ronbunshi NSKG (1999) J Cream Soc Jpn 99:974–982

    Google Scholar 

  34. Popova A, Sokolova E, Raicheva S, Christov M (2003) Corros Sci 45:33

    Article  Google Scholar 

  35. Gohr H, Schaller J, Schiller CA (1993) Electrochim Acta 38:1961

    Article  Google Scholar 

  36. Kliskic M, Radosevic J, Gudic S, Katalinic V (2000) J Appl Electrochem 30:823

    Article  CAS  Google Scholar 

  37. Babic Samardzija K, Hackerman N (2006) Anti Corros Method Mater 53:19

    Article  CAS  Google Scholar 

  38. Mohana KN, Badiea AM (2008) Corros Sci 50:2939–2947

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Afshari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afshari, V., Dehghanian, C. Inhibitor effect of sodium benzoate on the corrosion behavior of nanocrystalline pure iron metal in near-neutral aqueous solutions. J Solid State Electrochem 14, 1855–1861 (2010). https://doi.org/10.1007/s10008-010-1066-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1066-0

Keywords

Navigation