Skip to main content
Log in

PMo12-functionalized Graphene nanosheet-supported PtRu nanocatalysts for methanol electro-oxidation

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Graphene nanosheets, synthesized by a modified Hummers method, have been functionalized by PMo12, and used as the supports of the PtRu nanoparticles. The electrocatalytic properties of the resultant nanocatalysts (PtRu/PMo12-Graphene) for methanol electro-oxidation have been evaluated by cyclic voltammetry and chronoamperometry. The micrograph and the elemental composition have also been investigated by transmission electron microscopy and energy dispersive X-ray spectroscopy. The results suggest that the addition of PMo12 benefits the high dispersion of graphene nanosheets in the water and the uniform dispersion of the PtRu nanoparticles on the graphene nanosheets, and the PtRu/PMo12-Graphene catalysts have higher electrocatalytic activity and better electrochemical stability for methanol oxidation compared to the PtRu/Graphene catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155:95–110

    CAS  Google Scholar 

  2. Stoupin S, Chung EH, Chattopadhyay S, Segre CU, Smotkin ES (2006) Pt and Ru X-ray absorption spectroscopy of PtRu anode catalysts in operating direct methanol fuel cells. J Phys Chem B 110:9932–9938

    Article  CAS  Google Scholar 

  3. Rohson DR, Hagans PL, Swider KE, Long JW (1999) Role of hydrous ruthenium oxide in Pt–Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity. Langmuir 15:774–779

    Article  Google Scholar 

  4. Chan KY, Ding J, Ren JW, Cheng SA, Tsang KY (2004) Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J Mater Chem 14:505–516

    Article  CAS  Google Scholar 

  5. Spinace E, Neto AO, Linardi M (2004) Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles. J Power Sources 129:121–126

    Article  CAS  Google Scholar 

  6. Tsai Y-C, Hong Y-H (2008) Electro-chemical deposition of platinum nanoparticles in multiwalled carbon nanotube—Nafion composite for methanol electro-oxidation. J Solid State Electrochem 12:1293–1299

    Article  CAS  Google Scholar 

  7. Matsumoto T, Komatsu T, Arai K, Yamazaki T, Kijima M, Shimizu H, Takasawa Y, Nakamura J (2004) Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chem Commun 7:840–841

    Article  Google Scholar 

  8. Steigerwalt ES, Deluga GA, Lukehart CM (2002) Pt–Ru/carbon fiber nanocomposites: synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance. J Phys Chem B 106:760–766

    Article  CAS  Google Scholar 

  9. Chai GS, Yoon SB, Yu JS (2005) Highly efficient anode electrode materials for direct methanol fuel cell prepared with ordered and disordered arrays of carbon nanofibers. Carbon 43:3028–3031

    Article  CAS  Google Scholar 

  10. Yoshitake T, Shimakawa Y, Kuroshima S, Kimura H, Ichihashi T, Kubo Y (2002) Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Physica B 323:124–126

    Article  CAS  Google Scholar 

  11. Su F, Zhao XS, Wang Y, Zeng J, Zhou Z, Lee JY (2005) Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications. J Phys Chem B 109:20200–20206

    Article  CAS  Google Scholar 

  12. Yu JS, Kang S, Yoon SB, Chai G (2002) Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. J Am Chem Soc 124:9382–9383

    Article  CAS  Google Scholar 

  13. Liu Y, Qiu X, Huang Y, Zhu W, Wu G (2002) Influence of preparation process of MEA with mesocarbon microbeads supported Pt–Ru catalysts on methanol electrooxidation. J Appl Electrochem 32:1279–1285

    Article  CAS  Google Scholar 

  14. Joo SH, Lee HI, You DJ, Kwon K, Kim JH, Choi YS, Kang M, Kim JM, Pak C, Chang H, Seunga D (2008) Ordered mesoporous carbons with controlled particle sizes as catalyst supports for direct methanol fuel cell cathodes. Carbon 46:2034–2045

    Article  CAS  Google Scholar 

  15. Geim AK, MacDonald AH (2007) Graphene: exploring carbon flatland. Phys Today 60:35–41

    Article  CAS  Google Scholar 

  16. Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–514

    Article  CAS  Google Scholar 

  17. Dong LF, Gari R, Li Z, Craig MM, Hou SF (2010) Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48:781–787

    Article  CAS  Google Scholar 

  18. Xu C, Wang X, Zhu JW (2008) Graphene–metal particle nanocomposites. J Phys Chem, C 112:19841–19845

    Article  CAS  Google Scholar 

  19. Li YM, Tang LH, Li JH (2009) Preparation and electrochemical performance for methanol oxidation of pt/graphene nanocomposites. Electrochem Commun 11:846–849

    Article  Google Scholar 

  20. Yoo EJ, Okata T, Akita T, Kohyama M, Nakamura J, Honma I (2009) Enhanced electrocatalytic activity of Pt subnanoclusters on Graphene nanosheet surface. Nano Lett 9:2255–2259

    Article  CAS  Google Scholar 

  21. Bian J, Xiao M, Wang SJ, Lu YX, Meng YZ (2009) Graphite oxide as a novel host material of catalytically active Cu–Ni bimetallic nanoparticles. Catal Commun 10:1529–1533

    Article  CAS  Google Scholar 

  22. Wang X, Zhi LJ, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327

    Article  CAS  Google Scholar 

  23. Hummers WS, Offeman JRE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  24. Saito Y, Kitamura T, Wada Y, Yanagida S (2002) Poly(3, 4-ethylenedioxy- thiophene) as a hole conductor in solid state dye sensitized solar cells. Synth Met 131:185–187

    Article  CAS  Google Scholar 

  25. Mende LS, Grätzel M (2006) TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells. Thin Solid Films 500:296–301

    Article  Google Scholar 

  26. Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128:7720–7721

    Article  CAS  Google Scholar 

  27. Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem, C 112:8192–8195

    Article  CAS  Google Scholar 

  28. Si YC, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682

    Article  CAS  Google Scholar 

  29. Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857

    Article  CAS  Google Scholar 

  30. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  31. Liu H, Gao J, Xue MQ, Zhu N, Zhang MN, Cao TB (2009) Processing of graphene for electrochemical application: noncovalently functionalize graphene sheets with water-soluble electroactive methylene green. Langmuir 25:12006–12010

    Article  CAS  Google Scholar 

  32. Ferrell JR, Kuo MC, Turner JA, Herring AM (2008) The use of the heteropoly acids, H3PMo12O40 and H3PW12O40, for the enhanced electrochemical oxidation of methanol for direct methanol fuel cells. Electrochim Acta 53:4927–4933

    Article  CAS  Google Scholar 

  33. Maiyalagan T (2009) Silicotungstic acid stabilized Pt–Ru nanoparticles supported on carbon nanofibers electrodes for methanol oxidation. Int J Hydrogen 34:2874–2879

    Article  CAS  Google Scholar 

  34. Seo MH, Choi SM, Kim HJ, Kim JH, Cho BK, Kim WB (2008) A polyoxometalate-deposited Pt/CNT electrocatalyst via chemical synthesis for methanol electrooxidation. J Power Sources 179:81–86

    Article  CAS  Google Scholar 

  35. Kuhn A, Anson FC (1996) Adsorption of monolayers of P2Mo18O 6−62 and deposition of multiple laKyers of Os(bpy) 2+3 −P2Mo18O 6−62 on electrode surfaces. Langmuir 12:5481–5488

    Article  CAS  Google Scholar 

  36. Ge M, Zhong B, Klemperer WG, Gewirth AA (1996) Self-assembly of silicotungstate anions on silver surfaces. J Am Chem Soc 118:5812–5913

    Article  CAS  Google Scholar 

  37. Pan DW, Chen JH, Tao WY, Nie LH, Yao SZ (2006) Polyoxometalate-modified carbon nanotubes: new catalyst support for methanol electro-oxidation. Langmuir 22:5872–5876

    Article  CAS  Google Scholar 

  38. Han DM, Guo ZP, Zeng R, Kim CJ, Meng YZ, Liu HK (2009) Multiwalled carbon nanotube-supported Pt/Sn and Pt/Sn/PMo12 electrocatalysts for methanol electro-oxidation. J Hydrogen Energy 34:2426–2434

    Article  CAS  Google Scholar 

  39. Gilje S, Han S, Wang MS, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398

    Article  CAS  Google Scholar 

  40. Stoller MD, Park S, Zhu YW, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  41. Wang GX, Wang B, Park J, Yang J, Shen XP, Yao J (2009) Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon 47:68–72

    Article  CAS  Google Scholar 

  42. Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155–158

    Article  CAS  Google Scholar 

  43. Nethravathi C, Rajamathi M (2008) Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon 46:1994–1998

    Article  CAS  Google Scholar 

  44. Prader DN, Rusek JJ (2003) Energy density of a methanol/hydrogen-peroxide fuel cell. Appl Energy 74:135–140

    Article  Google Scholar 

  45. Guo ZP, Han DM, Wexler D, Zeng R, Yao SZ (2008) Polyoxometallate-stabilized platinum catalysts on multi-walled carbon nanotubes for fuel cell applications. Electrochim Acta 53:6410–6416

    Article  CAS  Google Scholar 

  46. Han DM, Guo ZP, Zhao ZW, Zeng R, Meng YZ, Shu D (2008) Polyoxometallate-stabilized Pt–Ru catalysts on multiwalled carbon nanotubes: influence of preparation conditions on the performance of direct methanol fuel cells. J Power Sources 184:361–369

    Article  CAS  Google Scholar 

  47. Kulesza PJ, Chojak M, Karnicka K, Miecznikowski K, Palys B, Lewera A, Wieckowski A (2004) Network films composed of conducting polymer-linked and polyoxometalate-stabilized platinum nanoparticles. Chem Mater 16:4128–4134

    Article  CAS  Google Scholar 

  48. Alcaide F, Miguel Ó, Grande H-J (2006) New approach to prepare Pt-based hydrogen diffusion anodes tolerant to CO for polymer electrolyte membrane fuel cells. Catal Today 116:408–414

    Article  CAS  Google Scholar 

  49. Minoru O, Tsuyohiko F, Naotoshi N (2009) Design of an assembly of Poly(benzimidazole), carbon nanotubes, and Pt nanoparticles for a fuel-cell electrocatalyst with an ideal interfacial nanostructure. Small 5:735–740

    Article  Google Scholar 

  50. Haruta M, Date M (2001) Advances in the catalysis of Au nanoparticles. Appl Catal, A 222:427–437

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by NSFC (20975033), the Program for Fu-Rong Scholar in Hunan Province, China and the Fundamental Research Funds for the Central Universities, China (531107040002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohua Zhang or Jinhua Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Zhang, X., Pang, H. et al. PMo12-functionalized Graphene nanosheet-supported PtRu nanocatalysts for methanol electro-oxidation. J Solid State Electrochem 14, 2267–2274 (2010). https://doi.org/10.1007/s10008-010-1067-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1067-z

Keywords

Navigation