Skip to main content
Log in

Electrochemical nanogravimetric studies of platinum in acid media

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical quartz crystal nanobalance (EQCN) is one of the most powerful tools to obtain information on the events occurring at the electrode surface. This method has been exploited to monitor the surface mass changes and hence to draw conclusions in respect of the formation and removal of adsorbed species and oxides as well as changes in the electrochemical double layer also in the case of platinum electrodes. However, the results that had been obtained so far are somewhat contradictory, and consequently diverse interpretations can be found in the literature. Therefore, it is worth to review the knowledge accumulated and to carry out systematic study in this respect. In this work smooth and platinized platinum electrodes in contact with acidic solutions were studied using EQCN technique. The effects of temperature, the nature of cations and anions, pH, concentrations, potential range were investigated on the electrochemical, and the simultaneously detected nanogravimetric responses. It is shown that in the underpotential deposition (upd) of hydrogen the adsorption/desorption of species from the solution phase is governed by the oxidative desorption/reductive adsorption of hydrogen; however, unambiguos conclusions cannot be drawn regarding the actual participation of anions and water molecules in the surface coverage. In the hydrogen evolution region a weak cation adsorption can be assumed and the potential of zero charge can be estimated. Cs+ cations affect the EQCN response in the hydrogen upd region. In some cases, e.g., in the case of upd of zinc the mass change can be explained by an induced anion adsorption. Two types of dissolution processes have been observed. A platinum loss was detected during the reduction of platinum oxide, the extent of which depends on the positive potential limit and the scan rate, and to a lesser extent on the temperature. The platinum dissolution during the electroreduction of oxide is related to the interfacial place exchange of the oxygen and platinum atoms in the oxide region. At elevated temperatures two competitive processes take place at high positive potentials: a dissolution of platinum and platinum oxide formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Woods R (1976) In: Bard AJ (ed) Electroanalytical chemistry, vol 9. Dekker, New York, pp 1–162

    Google Scholar 

  2. Llopis JF, Colom I (1976) In: Bard AJ (ed) Encyclopedia of electrochemistry of elements, vol 6. Dekker, New York, pp 170–219

    Google Scholar 

  3. Horányi G, Inzelt G (2006) In: Scholz F, Pickett CJ, Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 7a. Wiley-VCH, Weinheim, pp 497–528

    Google Scholar 

  4. Horányi G (2002) In: Gileadi E, Urbakh M, Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 1. Wiley-VCH, Weinheim, pp 349–382

    Google Scholar 

  5. Lee S-J, Pyun S-I, Lee S-K, Kang S-JL (2008) Israel J Chem 48:215

    Article  CAS  Google Scholar 

  6. Mitsushima S, Koizumi Y, Uzuka S, Ota K-I (2008) Electrochim Acta 54:455

    Article  CAS  Google Scholar 

  7. Yadav AP, Nishikata A, Tsuru T (2007) Electrochim Acta 52:7444

    Article  CAS  Google Scholar 

  8. Dam VAT, de Bruijn FA (2007) J Electrochem Soc 154:B494

    Article  CAS  Google Scholar 

  9. Umeda M, Kuwahara Y, Nakazawa A, Inoune M (2009) J Phys Chem C113:15707

    Google Scholar 

  10. Yadav AP, Nishikata A, Tsuru T (2009) J Electrochem Soc 156:C253

    Article  CAS  Google Scholar 

  11. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K, Iwashita N (2007) Chem Rev 107:3904

    Article  CAS  Google Scholar 

  12. Srinivasan S (2006) Fuel cells. Springer, New York

    Google Scholar 

  13. Meyers JP (2008) ECS Interface 17:36

    CAS  Google Scholar 

  14. Yousfi-Steinera N, Mocotéguya Ph, Candussoc D, Hisselb D (2009) J Power Sources 194:130

    Article  Google Scholar 

  15. Christensen PA, Hamnett A (1994) Techniques and mechanisms in electrochemistry. Blackie Academic Professional, London, pp 228–287

    Google Scholar 

  16. Nagy Z, You H (2002) Electrochim Acta 47:3037

    Article  CAS  Google Scholar 

  17. Ren B, Xu X, Li XQ, Cai WB, Tian ZQ (1999) Surf Sci 427–428:157

    Article  Google Scholar 

  18. Zeng D-M, Jiang Y-X, Zhou Z-Y, Su Z-F, Sun S-G (2010) Electrochim Acta 55:2065

    Article  CAS  Google Scholar 

  19. Burke LD, Ahern AJ (2001) J Solid State Electrochem 5:553

    Article  CAS  Google Scholar 

  20. Frelink T, Visscher W, van Veen JAR (1995) Electrochim Acta 40:545

    Article  CAS  Google Scholar 

  21. Marichev VA (2008) Electrochem Commun 10:643

    Article  CAS  Google Scholar 

  22. Noguchi H, Isimaru T, Okada T, Uosaki K (2009) 216th ECS Meeting, Vienna, Austria, Abs 3060

  23. Tsionsky V, Daikhin L, Urbakh M, Gileadi E (2004) In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry. Dekker, New York, pp 1–99

    Google Scholar 

  24. Schumacher R (1990) Angew Chem Int Ed Engl 29:329

    Article  Google Scholar 

  25. Birss VI, Chang M, Segal J (1993) J Electroanal Chem 35:181

    Article  Google Scholar 

  26. Raudonis R, Plausinitis D, Daujotis V (1993) J Electroanal Chem 358:351

    Article  CAS  Google Scholar 

  27. Santos MC, Miwa DW, Machado SAS (2000) Electrochem Commun 2:692

    Article  CAS  Google Scholar 

  28. Sitta E, Santos AL, Nagao R, Varela H (2009) Electrochim Acta 55:404

    Article  CAS  Google Scholar 

  29. Wilde CP, De Cliff SV, Hui KC, Brett DJL (2000) Electrochim Acta 45:3649

    Article  CAS  Google Scholar 

  30. Wilde CP, Zhang M (1992) J Electroanal Chem 327:307

    Article  CAS  Google Scholar 

  31. Jerkiewicz G, Vatankhah G, Lessard J, Soriaga MP, Park Y-S (2004) Electrochim Acta 49:1451

    CAS  Google Scholar 

  32. Tian M, Conway BE (2008) J Electroanal Chem 616:45

    Article  CAS  Google Scholar 

  33. Conway B, Zolfaghari A, Pell WG, Jerkiewicz G (2003) Electrochim Acta 48:3775

    Article  CAS  Google Scholar 

  34. Gollas B, Elliot JM, Barlett PN (2000) Electrochim Acta 45:3711

    Article  CAS  Google Scholar 

  35. Gloaguen F, Léger JM, Lamy C (1999) J Electroanal Chem 467:186

    Article  CAS  Google Scholar 

  36. Visscher W, Gootzen JFE, Cox AP, van Veen JAR (1998) Electrochim Acta 43:533

    Article  CAS  Google Scholar 

  37. Watanabe M, Uchida H, Ikeda N (1995) J Electroanal Chem 380:255

    Article  Google Scholar 

  38. Shimazu K, Kita H (1992) J Electroanal Chem 341:361

    Google Scholar 

  39. Horányi G, Rizmayer E (1987) J Electroanal Chem 218:337

    Article  Google Scholar 

  40. Horányi G, Inzelt G (1978) J Electroanal Chem 86:215

    Article  Google Scholar 

  41. Horányi G (2004) In: Horányi G (ed) Radiotracer studies of interfaces. Elsevier, Amsterdam, pp 39–98

    Chapter  Google Scholar 

  42. Wieckowski A (1990) In: White RE, Bockris JO’M, Conway BE (eds) Modern aspects of electrochemistry, vol 21. Plenum, New York, pp 65–119

    Google Scholar 

  43. Johnson DR, Napp DT, Bruckenstein S (1970) Electrochim Acta 15:1493

    Article  CAS  Google Scholar 

  44. Kulesza PJ, Lu W, Faulkner LR (1992) J Electroanal Chem 336:35

    Article  CAS  Google Scholar 

  45. Ragoisha GA, Osipovich NP, Bondarenko AS, Zhang J, Kocha S, Iiyama A (2010) J Solid State Electrochem 14:531

    Article  CAS  Google Scholar 

  46. Hepel M (1999) In: Wieckowski A (ed) Interfacial electrochemistry. Dekker, New York, pp 599–630

    Google Scholar 

  47. Horanyi G, Aramata A (1997) J Electroanal Chem 434:204

    Article  Google Scholar 

  48. Aramata A, Terui S, Taguchi S, Kawaguchi T, Shimazu K (1996) Electrochim Acta 41:761

    Article  CAS  Google Scholar 

  49. Weast RC (ed) (1977–1978) Handbook of chemistry and physics 58th edition, CRC, Cleveland Ohio

  50. Timmermans J (1960) The physico-chemical constants of binary systems in concentrated solutions, vol 3. Interscience, New York

    Google Scholar 

  51. Landolt-Börnstein Zahlenwerte und Functionen aus Physik Chemie (1969) Andrussow L, Schramm B, Schäfer K (eds) Sechste Auflage Band II Teil 5, Springer, Heidelberg New York

Download references

Acknowledgments

Financial supports of the National Office of Research and Technology (OMFB-00356/2007 and OM-00121-00123/2008) and National Scientific Research Fund (OTKA K71771) as well as GVOP-3.2.1-2004-040099 are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Inzelt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inzelt, G., Berkes, B.B., Kriston, Á. et al. Electrochemical nanogravimetric studies of platinum in acid media. J Solid State Electrochem 15, 901–915 (2011). https://doi.org/10.1007/s10008-010-1071-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1071-3

Keywords

Navigation