Skip to main content
Log in

Exfoliated graphite nanosheets/carbon nanotubes hybrid materials for superior performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured hybrid material of exfoliated graphite nanosheets and carbon nanotubes (GNSNT) served as supercapacitor electrode materials was presented. The nanostructured hybrid was prepared by a facile chemical reduction method. The hybrid material was characterized by X-ray diffraction technique, transmission electron microscopy, scanning electron microscopy, cyclic voltammetry, galvanostatic charge/discharge cycling, and four-point probe conductivity measurement to represent a well-defined nanostructure possessing a vast number of active sites and delivering the ingredients for a fast effective charge separation network. Our results clearly demonstrated that the hybrid possess a superior performance. A specific capacitance value 266 F/g was obtained for GNSNT hybrid electrode at a current density of 0.1 A/g, while it was only 185 F/g for exfoliated graphite nanosheets (GNS). At a higher current density of 2 A/g, the GNSNT electrode still keeps a specific capacitance of 220 F/g, which is more than double that of GNS. This synergistic effect of the nanostructured hybrid material offers an effective network for charge separation and therefore renders a significantly enhanced specific capacitance and rate capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fan LZ, Maier J (2006) Electrochem Commun 8:937

    Article  CAS  Google Scholar 

  2. Zhang LL, Zhao XS (2009) Chem Soc Rev 38:2520

    Article  CAS  Google Scholar 

  3. Cui GL, Zhi LJ, Müllen K (2007) Chem Phys Chem 8:1013

    CAS  Google Scholar 

  4. Raymundo PE, Leroux F, Beguin F (2006) Adv Mater 18:1877

    Article  Google Scholar 

  5. Niu CM, Sichel EK, Hoch R, Moy D (1997) Appl Phys Lett 70:1480

    Article  CAS  Google Scholar 

  6. Diederich L, Barborini E, Piseri P, Podesta A, Milani P (1999) Appl Phys Lett 75:2662

    Article  CAS  Google Scholar 

  7. An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Adv Funct Mater 11:387

    Article  CAS  Google Scholar 

  8. Liu CG, Liu M, Li F, Cheng HM (2008) Appl Phys Lett 92:143108

    Article  Google Scholar 

  9. Ania CO, Khomenko V, Raymundo-Pinero E, Parra JB, Beguin F (2007) Adv Funct Mater 17:1828

    Article  CAS  Google Scholar 

  10. Wang D, Li F, Liu M, Lu GQ, Cheng HM (2008) Angew Chem Int Ed 47:373

    Article  CAS  Google Scholar 

  11. Feng XL, Liang YY, Zhi LJ, Thomas A, Wu DQ, Lieberwirth I, Kolb U, Müllen K (2009) Adv Funct Mater 19:2125

    Article  CAS  Google Scholar 

  12. Xu B, Wu F, Chen R, Cao G, Chen S, Zhou Z, Yang YS (2008) Electrochem Commun 10:795

    Article  CAS  Google Scholar 

  13. Fang B, Binder L (2006) J Power Sources 163:616

    Article  CAS  Google Scholar 

  14. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666

    Article  CAS  Google Scholar 

  15. Geim AK, Novoselov KS (2007) Nat Mater 6:183

    Article  CAS  Google Scholar 

  16. Rouhanipour A, Roy M, Feng XL, Räder HJ, Müllen K (2009) Angew Chem Int Ed 48:4602

    Article  CAS  Google Scholar 

  17. Vivekchand RC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR (2008) J Chem Sci 120:9

    Article  CAS  Google Scholar 

  18. Meryl D, Stoller PS, Zhu YW, An JH, Ruoff RS (2008) Nano Lett 8:3498

    Article  Google Scholar 

  19. Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, Chen YS (2009) J Phys Chem C 113:13103

    Article  CAS  Google Scholar 

  20. Lv W, Tang DM, He YB, You CH, Shi ZQ, Cheng X, Chen CM, Hou PX (2009) ACS Nano 3:3730

    Article  CAS  Google Scholar 

  21. Li D, Müller M, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101

    Article  CAS  Google Scholar 

  22. Wang DW, Li F, Zhao JP, Ren WC, Chen ZG, Tan J, Wu ZS, Gentle I, Lu GQ, Cheng HM (2009) ACS Nano 3:1745

    Article  CAS  Google Scholar 

  23. Cai DY, Song M, Xu CX (2008) Adv Mater 20:1706

    Article  CAS  Google Scholar 

  24. Tung VC, Chen LM, Allen MJ, Wassei JK, Nelson K, Kaner RB, Yang Y (2009) Nano Lett 9(5):1949

    Article  CAS  Google Scholar 

  25. Yu AP, Ramesh P, Sun XB, Bekyarova E, Itkis ME, Haddon RC (2008) Adv Mater 20:4740

    Article  CAS  Google Scholar 

  26. Yoo E, Kim J, Hosono E, Zhou HS, Kudo T, Honma I (2008) Nano Lett 8:2277

    Article  CAS  Google Scholar 

  27. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  28. Liu B, Aydil ES (2009) J Am Chem Soc 131:3985

    Article  CAS  Google Scholar 

  29. Khomenko V, Frackowiak E, Beguin F (2005) Electrochim Acta 50:2499

    Article  CAS  Google Scholar 

  30. An KH, Kim SW, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Adv Funct Mater 11:391

    Article  Google Scholar 

  31. Frackowiak E, Beguin F (2001) Carbon 39:937

    Article  CAS  Google Scholar 

  32. Zhou HS, Zhu SM, Hibino M, Honma I (2003) J Power Sources 122:219

    Article  CAS  Google Scholar 

  33. Conway BE (1999) Kluwer Academic, New York

  34. Wang KP, Teng HS (2006) Carbon 44:3218

    Article  CAS  Google Scholar 

  35. Nian YR, Teng HS (2002) J Electrochem Soc 149:A1008

    Article  CAS  Google Scholar 

  36. Portet C, Taberna PL, Simon P, Laberty-Robert C (2004) Electrochim Acta 49:905

    Article  CAS  Google Scholar 

  37. Zhang K, Zhang LL, Zhao XS, Wu JS (2010) Chem Mater 22:1392

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the support of “100 Talents” program of the Chinese Academy of Sciences, and National Natural Science Foundation of China (Grant Nos. 20901044, 20971077, and 20902052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanglei Cui.

Additional information

Haibo Wang and Zhihong Liu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 112 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Liu, Z., Chen, X. et al. Exfoliated graphite nanosheets/carbon nanotubes hybrid materials for superior performance supercapacitors. J Solid State Electrochem 15, 1179–1184 (2011). https://doi.org/10.1007/s10008-010-1183-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1183-9

Keywords

Navigation