Skip to main content
Log in

Historical development of theories of the electrochemical double layer

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2011

Abstract

This review describes the evolution of important concepts related to potential drops at interfaces in electrochemical systems. The role of the thermodynamic theory of electrocapillarity of perfectly polarizable electrodes in the development of interfacial electrochemistry is emphasized. A critical analysis of the phenomenological models of the electrical double layer on ideally polarizable electrodes is given. Certain trends in studying solid electrodes with well-defined surfaces brought into contact with electrolyte solutions are summarized. Attention is drawn to several unsolved problems crucial for the future development of electrochemical surface science. Finally, some recent experimental data are analyzed for selected models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For solvents under study, the donor numbers are as follows: AN, 14.1; PC, 15.1; water, 18.0; MeOH, 19.0; EtOH, 19.6; FA, 24.0; DMF, 26.6; DMSO, 29.8; HMPTA, 38.8; EDA, 55 [19].

  2. This is the amount of a given component that should be introduced into the solution so that the increase in the interface by a surface unit would not change the volume phase composition.

  3. Chapman [63] derived quantitative relationships of the diffuse layer theory 3 years later than Gouy [62], albeit quite independently. As was noted in [7] (chapter 5), the name “Gouy–Chapman theory” seems to be historically incorrect.

References

  1. Volta A (1800) Phil Mag 7:289

    Google Scholar 

  2. Nernst W (1888) Z physik Chem 2:613

    Google Scholar 

  3. Ostwald W (1911) Istoria elektrokhimii [Electrochemistry history]. Obrazovanie, St. Petersburg (in Russian)

    Google Scholar 

  4. Langmuir I (1916) Trans Am Electrochem Soc 29:125

    CAS  Google Scholar 

  5. Frumkin A, Gorodetzkaja A (1928) Z Physik Chem 136:451

    CAS  Google Scholar 

  6. Frumkin A (1965) Sven Kem Tidskr 77:300

    CAS  Google Scholar 

  7. Frumkin AN (1979) Potentials of zero charge. Nauka, Moscow (in Russian)

    Google Scholar 

  8. Frumkin A, Polianovskaya N, Grigoryev N, Bagotskaya I (1965) Electrochim Acta 10:793

    Article  CAS  Google Scholar 

  9. Trasatti S (1971) J Electroanal Chem 33:351

    Article  CAS  Google Scholar 

  10. Trasatti S (1977) Adv Electrochem Electrochem Eng 10:213

    CAS  Google Scholar 

  11. Doubova L, De Battisti A, Trasatti S (1986) Electrochim Acta 31:881

    Article  CAS  Google Scholar 

  12. Pazzatini G, Moncelli MR, Innocenti M, Guidelli R (1990) J Electroanal Chem 275:295

    Google Scholar 

  13. Bagotskaya IA, Emets VV, Boitsov BG, Кazarinov VE (1991) Elektrokhimiya 27:291

    CAS  Google Scholar 

  14. Emets VV, Damaskin BB (2009) Elektrokhimiya 45:49

    Google Scholar 

  15. Randles JEB (1956) Trans Faraday Soc 52:1573

    Article  CAS  Google Scholar 

  16. Damaskin BB, Кaganovich RI (1977) Elektrokhimiya 13:293

    CAS  Google Scholar 

  17. Amokrane S, Badiali JP (1989) J Electroanal Chem 266:21

    Article  CAS  Google Scholar 

  18. Amokrane S, Badiali JP (1991) J Electroanal Chem 297:377

    Article  CAS  Google Scholar 

  19. Gutmann V (1968) Coordination chemistry in non-aqueous solutions. Springer, New York

    Google Scholar 

  20. Lippmann G (1875) Ann Chim Phys 5:494

    Google Scholar 

  21. Gibbs W (1906) In: Bumstead HA, Van Name RG (eds) Scientific papers of J. Willard Gibbs: thermodynamics, volume 1 of scientific papers of J. Willard Gibbs, Ralph Gibbs Van Name. Longmans, Green and Co., New York

  22. Gibbs W (1878) Trans Conn Acad 3:343

    Google Scholar 

  23. Planck M (1891) Ann Phys 44:385

    Article  Google Scholar 

  24. Koenig F (1934) J Phys Chem 38:339

    Article  CAS  Google Scholar 

  25. Frumkin A (1923) Z Phys Chem 103:55

    Google Scholar 

  26. Frumkin AN, Petrii OA, Damaskin BB (1970) J Electroanal Chem 27:81

    Article  CAS  Google Scholar 

  27. Frumkin AN, Petrii OA, Marvet RV (1966) J Electroanal Chem 12:504

    CAS  Google Scholar 

  28. Frumkin AN, Petrii OA, Kossaya AM, Entina VS, Topolev VV (1968) J Electroanal Chem 16:175

    Article  CAS  Google Scholar 

  29. Frumkin AN, Petrii OA (1970) Electrochim Acta 15:391

    Article  CAS  Google Scholar 

  30. Frumkin AN, Petrii OA (1975) Electrochim Acta 20:347

    Article  CAS  Google Scholar 

  31. Petrii OA (1981) In: Goodrich FC, Rusanov AI (eds) Modern theory of capillarity. Akad Verlag, Berlin

    Google Scholar 

  32. Lorenz W (1961) Z Phys Chem 218:272

    CAS  Google Scholar 

  33. Damaskin BB (1969) Elektrokhimiya 5:771

    CAS  Google Scholar 

  34. Parsons R (1970) In: Delahay P (ed) Advances electrochemistry and electrochemical engineering, vol 7. Interscience, New York

    Google Scholar 

  35. Grafov B, Pekar E, Petrii O (1972) J Electroanal Chem 40:179

    Article  CAS  Google Scholar 

  36. Vetter K, Schultze J (1972) Ber Bunsenges Phys Chem 76:920–927

    CAS  Google Scholar 

  37. Vetter K, Schultze J (1974) J Electroanal Chem 53:67

    Article  CAS  Google Scholar 

  38. Frumkin AN, Polianovskaya NS, Damaskin BB (1976) J Electroanal Chem 267:273

    Article  Google Scholar 

  39. Schultze J, Koppitz F (1976) Electrochim Acta 21:327–337

    Article  CAS  Google Scholar 

  40. Schultze JW, Rolle D (1997) Can J Chem 75:1750

    Article  CAS  Google Scholar 

  41. Parsons R (1994) J Electroanal Chem 376:15

    Article  CAS  Google Scholar 

  42. De Levi R (2004) J Electroanal Chem 562:273

    Article  CAS  Google Scholar 

  43. Herrero-Rodriguez E, Mostany J, Feliu JM, Lipkowski J (2002) J Electroanal Chem 534:79

    Article  Google Scholar 

  44. Mostany J, Herrero E, Feliu JM, Lipkowski J (2003) J Electroanal Chem 550:19

    Google Scholar 

  45. Garcia-Araez N, Climent V, Feliu JM (2008) J Solid State Electrochem 12:387

    Article  CAS  Google Scholar 

  46. Garcia-Araez N, Climent V, Rodriguez P, Feliu JM (2008) Electrochim Acta 53:6793

    Article  CAS  Google Scholar 

  47. Mostany J, Climent V, Herrero E, Feliu JM (2010) J Electroanal Chem 649:119

    Article  CAS  Google Scholar 

  48. Lang G, Heusler KE (1994) J Electroanal Chem 377:1

    Article  CAS  Google Scholar 

  49. Kolb DM, Parsons R (1998) J Electroanal Chem 452:193

    Article  Google Scholar 

  50. Schmickler W, Leiva E (1998) J Electroanal Chem 453:61

    Article  CAS  Google Scholar 

  51. Guidelli R (1998) J Electroanal Chem 453:69

    Article  CAS  Google Scholar 

  52. Grafov BM (1998) J Electroanal Chem 471:105

    Google Scholar 

  53. Lang G, Heusler KE (1999) J Electroanal Chem 472:168

    Article  CAS  Google Scholar 

  54. Lipkowski J, Schmickler W (1999) J Electroanal Chem 472:174

    Article  Google Scholar 

  55. Haiss W, Nichols RJ, Sass JK, Charle KP (1998) J Electroanal Chem 452:199

    Article  CAS  Google Scholar 

  56. Gokhshtein AYa (1976) Poverhnostnoe natyajenie tverdyh tel i adsorbtsiya [Surface tension of solids and adsorption]. Nauka, Moscow (in Russian)

    Google Scholar 

  57. Gokhstein AYa (2000) Uspekhi Fizicheskikh Nauk 43:725

    Article  Google Scholar 

  58. Varley C (1871) Philos Trans R Soc 161:129

    Article  Google Scholar 

  59. Proskurnin M, Frumkin A (1935) Trans Faraday Soc 31:110

    Article  CAS  Google Scholar 

  60. Helmholtz H (1853) Pogg Ann Phys 89:228

    Google Scholar 

  61. Helmholtz H (1879) Wied Ann 7:337

    Google Scholar 

  62. Gouy G (1910) J de Physique 9:457

    CAS  Google Scholar 

  63. Chapman DL (1913) Phil Mag 25:475

    Google Scholar 

  64. Stern O (1924) Z Elektrochem 30:508

    CAS  Google Scholar 

  65. Vorsina MA, Frumkin AN (1939) Dokl AN USSR 24:918

    CAS  Google Scholar 

  66. Grahame DC (1947) Chem Rev 41:441

    Article  CAS  Google Scholar 

  67. Kornyshev AA, Vorotyntsev MA (1981) Can J Chem 59:2031

    Article  CAS  Google Scholar 

  68. Grahame DC (1957) J Am Chem Soc 79:2093

    Article  CAS  Google Scholar 

  69. Watts-Tobin R (1961) Phil Mag 6(61):133

    Article  CAS  Google Scholar 

  70. Macdonald JR, Barlow CA (1962) J Chem Phys 36:3062

    Article  CAS  Google Scholar 

  71. Damaskin BB, Frumkin AN (1974) Electrochim Acta 19:173

    Article  CAS  Google Scholar 

  72. Parsons R (1975) J Electroanal Chem 59:229

    Article  CAS  Google Scholar 

  73. Fawcett WR (1978) J Phys Chem 82:1385

    Article  CAS  Google Scholar 

  74. Guidelli R (1981) J Electroanal Chem 123:59

    Article  CAS  Google Scholar 

  75. Guidelli R (1986) In: Silva AF (ed) Trends in interfacial electrochemistry. Riedel Publishing, Dordrecht

    Google Scholar 

  76. Gonzalez R, Sanz F (1997) Electroanalysis 9:169

    Article  CAS  Google Scholar 

  77. Damaskin BB, Grafov BM (1998) Russ J Electrochem 34:967

    CAS  Google Scholar 

  78. Emets VV, Damaskin BB (2000) Russ J Electrochem 36:1014

    Google Scholar 

  79. Rice OK (1928) Phys Rev 31:1051

    Google Scholar 

  80. Vorotyntsev MA (1983) Izotov VYu, Kornyshev AA, Schmickler W. Elektrokhimiya 19:295

    CAS  Google Scholar 

  81. Vorotyntsev MA, Kornyshev AA (1984) Elektrokhimiya 20:3

    CAS  Google Scholar 

  82. Badiali JP (1986) Electrochim Acta 31:149

    Article  CAS  Google Scholar 

  83. Valette G (1987) J Electroanal Chem 230:189

    Article  CAS  Google Scholar 

  84. Molina FV, Gordillo GJ, Posadas D (1988) J Electroanal Chem 239:405

    Article  CAS  Google Scholar 

  85. Emets VV, Damaskin BB, Bagotskaya IA, Kazarinov VE (1998) J Electroanal Chem 448:229

    Article  Google Scholar 

  86. Vorotyntsev MA, Mityushev PV (1991) Electrochim Acta 36:405

    Article  Google Scholar 

  87. Hurwitz HD (1965) J Electroanal Chem 10:35

    Article  CAS  Google Scholar 

  88. Dutkiewics E, Parsons R (1966) J Electroanal Chem 11:100

    Article  Google Scholar 

  89. Grahame DC, Parsons R (1961) J Am Chem Soc 83:1291

    Article  CAS  Google Scholar 

  90. Parry JM, Parsons R (1963) Trans Faraday Soc 59:241

    Article  CAS  Google Scholar 

  91. Payne R (1965) J Phys Chem 69:4113

    Article  CAS  Google Scholar 

  92. Payne R (1966) J Electrochem Soc 113:999

    Article  CAS  Google Scholar 

  93. Payne R (1966) J Phys Chem 70:20

    Article  Google Scholar 

  94. Gonzalez ER (1989) J Electroanal Chem 258:39

    Article  Google Scholar 

  95. Damaskin BB, Perchenko OA, Karpov SI (1985) Elektrokhimiya 21:103

    CAS  Google Scholar 

  96. Alekseev YuV, Popov YuA, Kolotyrkin YaM (1975) J Electroanal Chem 62:135

    Article  Google Scholar 

  97. Damaskin BB, Кarpov SI (1982) Elektrokhimiya 18:3

    CAS  Google Scholar 

  98. Damaskin BB, Кarpov SI, Dyatkina SL (1982) Elektrokhimiya 18:261

    CAS  Google Scholar 

  99. Damaskin BB, Safonov VA, Baturina OA, Safonov NV (2003) J Electroanal Chem 550:3

    Article  CAS  Google Scholar 

  100. Nikitas P (1994) J Electroanal Chem 375:319–339

    Article  CAS  Google Scholar 

  101. Nikitas P (2003) In: Vayenas CG, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 36. Kluwer, New York

    Google Scholar 

  102. Damaskin BB, Baturina OA (1998) Russ J Electrochem 34:366

    CAS  Google Scholar 

  103. Damaskin BB, Stenina EV, Sviridova LN (2010) Russ J Electrochem 46:395

    Google Scholar 

  104. Vorotyntsev MA, Izotov VYu (1983) Elektrokhimiya 19:831

    CAS  Google Scholar 

  105. Kornyshev AA, Vorotyntsev MA (1993) Elektrostatika sred s prostranstvennoy dispersiey. Nauka, Moscow (in Russian)

    Google Scholar 

  106. Damaskin BB, Pankratova IA (1987) Elektrokhimiya 23:1302

    CAS  Google Scholar 

  107. Damaskin BB, Pankratova IA, Palm U et al (1987) J Electroanal Chem 234:31

    Article  CAS  Google Scholar 

  108. Frumkin A (1926) Z Phys 35:792

    Article  CAS  Google Scholar 

  109. Frumkin A (1925) Z Phys Chem 116:466

    CAS  Google Scholar 

  110. Damaskin BB, Petrii OA, Batrakov VV (1971) Adsorption of organic compounds on electrodes. Plenum, New York

    Google Scholar 

  111. Damaskin BB, Safonov VA, Baturina OA (1995) Russ J Electrochem 31:788

    CAS  Google Scholar 

  112. Damaskin BB, Safonov VA, Baturina OA (1997) Russ J Electrochem 33:105

    CAS  Google Scholar 

  113. Damaskin BB, Baturina OA (1997) Russ J Electrochem 33:1057

    CAS  Google Scholar 

  114. Sottomayor MJ, Coelho V, Ferreira AP, Silva F, Baturina OA, Safonov VA, Damaskin BB (1999) Electrochim Acta 45:775

    Article  CAS  Google Scholar 

  115. Damaskin BB, Baturina OA, Emets VV, Vasil’ev SYu, Kazarinov VE (1998) Russ J Electrochem 34:1

    Google Scholar 

  116. Damaskin BB (1988) Elektrokhimiya 24:1415

    CAS  Google Scholar 

  117. Damaskin BB (2007) Russ J Electrochem 43:9

    Article  CAS  Google Scholar 

  118. Damaskin BB (2009) Russ J Electrochem 45:1072

    Article  CAS  Google Scholar 

  119. Damaskin BB (2010) Russ J Electrochem 46:130

    Article  CAS  Google Scholar 

  120. Damaskin BB (ed) (1985) Elektrodnye processy v rastvorah organicheskih soedinenii. Izdatelstvo MGU, Moscow (in Russian)

    Google Scholar 

  121. Stenina EV, Damaskin BB (1985) Elektrokhimiya 21:1587

    CAS  Google Scholar 

  122. Benderskii VA, Velichko GI (1988) Uspekhi Chem 57:1065

    CAS  Google Scholar 

  123. Buess-Herman C (1986) In: Silva AF (ed) Trends in interfacial electrochemistry, D. Riedel Publishing, Dordrecht

    Google Scholar 

  124. De Levie R (1988) Chem Rev 88:599

    Article  Google Scholar 

  125. Retter U (1987) J Electroanal Chem 236:21

    Article  CAS  Google Scholar 

  126. Saffarian MH, Sridharcn R, de Levie R (1987) J Electroanal Chem 218:273–287

    Article  CAS  Google Scholar 

  127. Wandlowski T, Pospishil I (1989) J Electroanal Chem 270:319

    Article  CAS  Google Scholar 

  128. Kharkats YuI, Retter U (1990) J Electroanal Chem 287:363

    Article  CAS  Google Scholar 

  129. Basha CA, Sangaranarayanan MV (1990) J Electroanal Chem 291:261

    Article  CAS  Google Scholar 

  130. Parsons R (1990) Chem Rev 90:813

    Article  CAS  Google Scholar 

  131. Stafiej J, Dymitrowska M, Badiali JP (1996) Electrochim Acta 41:2107

    Article  CAS  Google Scholar 

  132. Badiali JP, Di Caprio D, Stafiej J (1998) Electrochim Acta 43:2947

    Article  Google Scholar 

  133. Stafiej J, Borkowska Z, Badiali JP (2000) Electrochim Acta 45:3489

    Article  CAS  Google Scholar 

  134. Levine S, Outhwaite CW (1978) J Chem Soc Faraday Trans II 74:1670

    Article  CAS  Google Scholar 

  135. Levine S, Outhwaite CW, Bhulyan LB (1981) J Electroanal Chem 123:105

    Article  CAS  Google Scholar 

  136. Outhwaite CW, Bhulyan LB (2007) J Electroanal Chem 609:51

    Article  CAS  Google Scholar 

  137. Torrie GM, Valleau JP (1980) J Chem Phys 73:5807

    Article  CAS  Google Scholar 

  138. Torrie GM, Valleau JP (1982) J Phys Chem 86:3251

    Article  CAS  Google Scholar 

  139. Carnie SL, Chan DYC, Mitchel DJ, Ninham BW (1981) J Chem Phys 74:1472

    Article  CAS  Google Scholar 

  140. Fawcett WR (2009) Electrochim Acta 54:4997

    Article  CAS  Google Scholar 

  141. Kuznetsov An, Reinhold J, Lorentz W (1984) Electrochim Acta 29:81

    Article  Google Scholar 

  142. Kuznetsov An, Nazmutdinov RR, Shapnik RR (1986) Elektrokhimiya 22:776

    CAS  Google Scholar 

  143. Schmickler W (1996) Chem Rev 96:3177

    Article  CAS  Google Scholar 

  144. Guidelli R, Schmickler W (2000) Electrochim Acta 45:2317

    Article  CAS  Google Scholar 

  145. Kornyshev AA, Spohr E, Vorotyntsev MA (2002) In: Bard AJ, Stratmann M, Gileadi E, Urbakh M (eds) Encyclopedia of electrochemistry, vol 1. Wiley-VCH, New York

    Google Scholar 

  146. Nazmutdinov RR (2002) Russ J Electrochem 38:131

    Google Scholar 

  147. Spohr E (2003) Electrochim Acta 49:23

    Article  CAS  Google Scholar 

  148. Hubbard A (1988) Chem Rev 88:633

    Article  CAS  Google Scholar 

  149. Arvia AJ, Salvarezza RC, Triaca WE (2004) J New Mater Electrochem Syst 7:133

    CAS  Google Scholar 

  150. Clavilier J, Durand R, Guinet G, Faure R et al (1981) J Electroanal Chem 127:281

    Article  CAS  Google Scholar 

  151. Clavilier J, Armand D (1986) J Electroanal Chem 199:187

    Article  CAS  Google Scholar 

  152. Petrii OA, Pron’kin SN, Tsirlina GA, Spiridonov FM, Khruscheva ML (1999) Elektrokhimija 35:12

    Google Scholar 

  153. Plyasova LM, Molina IYu, Gavrilov AV, Cherepanova SV, Cherstiouk OV, Rubina NA, Savinova ER, Tsirlina GA (2006) Electrochim Acta 51:4477

    Article  CAS  Google Scholar 

  154. Clavilier J, Faure R, Guinet G, Durand R (1980) J Electroanal Chem 107:205

    Article  CAS  Google Scholar 

  155. Kibler LA (2003) Preparation and characterization of noble metal single crystal electrode surfaces. http://www.uni-ulm.de/echem/ekat/kibler_single_crystals_2003.pdf

  156. Trasatti S, Lust E (1999) In: White RE, JO’M B, Conway BE (eds) Modern aspects of electrochemistry, vol 33. Kluwer, New York

    Google Scholar 

  157. Hamelin A (1985) In: Conway BE, White RE, JO’M B (eds) Modern aspects of electrochemistry, vol 16. Plenum, New York

    Google Scholar 

  158. Kolb DM, Schneider J (1986) Electrochim Acta 31:929

    Article  CAS  Google Scholar 

  159. Kolb DM (2000) Electrochim Acta 45:2387

    Article  CAS  Google Scholar 

  160. Pedersen MO, Helberg S, Ruban A, Stengaard I, Lagsggard E, Norskov JK, Besenbacher F (1999) Surf Sci 426:395

    Article  CAS  Google Scholar 

  161. Nagy G (1996) J Electroanal Chem 409:19

    Article  Google Scholar 

  162. Halbritter J, Repphun G, Vinzelberg S, Staikov G, Lorenz WJ (1995) Electrochim Acta 40:1385

    Article  CAS  Google Scholar 

  163. Frumkin A, Shlygin A (1936) Acta Physicochim URSS 5:819

    CAS  Google Scholar 

  164. Slygin A, Frumkin A, Medwedowsky W (1936) Acta Physicochim URSS 4:911

    Google Scholar 

  165. Frumkin A, Slygin A (1936) Izvestiya AN USSR. Otd fiz-mat estestv nauk 773

  166. Balashova N (1957) Z Phys Chem 207:340

    CAS  Google Scholar 

  167. Balashova N, Kazarinov V (1969) In: Bard AJ (ed) Electroanalytical chemistry, vol 3. Marcel Dekker, New York

  168. Horanyi G (2002) In: Gileadi E, Urbakh M, Bard AJ, Stratmann M (eds) Encyclopedia of electrochemistry, vol 1, chapter 3. Wiley-VCH, Weinheim

  169. Wieckowski A (1990) In: White RE, JO’M B, Conway BE (eds) Modern aspects of electrochemistry, vol 21. Plenum, New York

    Google Scholar 

  170. Frumkin AN, Petrii OA, Marvet RV (1967) Elektrokhimiya 3:1311

    CAS  Google Scholar 

  171. Petrii OA, Kotlov YuG (1968) Elektrokhimiya 4:1256

    CAS  Google Scholar 

  172. Frumkin AN, Petrii OA, Kolotyrkina TYa (1974) Elektrokhimiya 10:1741

    CAS  Google Scholar 

  173. Damaskin BB, Petrii OA (1968) Elektrokhimiya 4:598

    CAS  Google Scholar 

  174. Damaskin BB, Safonov VA, Petrii OA (1989) J Electroanal Chem 258:13

    Article  CAS  Google Scholar 

  175. Petrii OA, Safonov VA, Shchigorev IG (1973) Elektrokhimiya 9:125

    CAS  Google Scholar 

  176. Petrii OA, Vasina SYa, Luk’yanycheva LYu (1981) Elektrokhimiya 17:1583

    Google Scholar 

  177. Vasina SYa, Luk’yanycheva LYu, Petrii OA (1989) Elektrokhimiya 25:291

    CAS  Google Scholar 

  178. Damaskin BB, Petrii OA, Kazarinov VE (1972) Elektrokhimiya 8:1373

    CAS  Google Scholar 

  179. Vasina SYa, Petrii OA, Gurinovich NN (1977) Elektrokhimiya 13:1157

    CAS  Google Scholar 

  180. Frumkin AN, Malysheva ZhN, Petrii OA, Kazarinov VE (1972) Elektrokhimiya 8:599

    CAS  Google Scholar 

  181. Vasina SYa, Kazarinov VE, Petrii OA (1978) Elektrokhimiya 14:79

    CAS  Google Scholar 

  182. Woodward F, Scortichini C, Reilley C (1983) J Electroanal Chem 151:109

    Article  Google Scholar 

  183. Motoo S, Furuya N (1984) J Electroanal Chem 172:339

    Article  CAS  Google Scholar 

  184. Marcovic N, Hansen M, McDougall G, Yeager E (1986) J Electroanal Chem 124:555

    Article  Google Scholar 

  185. Feliu HM (2011) J Solid State Electrochem Special issue (in press)

  186. Kolb D, Hansen W (1979) Surf Sci 79:205

    Article  CAS  Google Scholar 

  187. Hansen W (1980) Surf Sci 101:109

    Article  CAS  Google Scholar 

  188. Kotz E, Neff H, Miller K (1986) J Electroanal Chem 215:331

    Article  CAS  Google Scholar 

  189. Ishikawa R, Hubbard A (1976) Surf Sci 69:317

    CAS  Google Scholar 

  190. Ross R (1977) Surf Sci 76:139

    Google Scholar 

  191. Yeager E, O’Grady W, Woo M, Hagans P (1978) J Electrochem Soc 125:348

    Article  CAS  Google Scholar 

  192. Kalish TV, Petrii OA, Ushmaev AV, Voronina GF (1980) Elektrokhimiya 16:1236

    CAS  Google Scholar 

  193. Ushmaev AV, Voronina GF, Kalish NV, Petrii OA (1982) Elektrokhimiya 18:530

    CAS  Google Scholar 

  194. Homa A, Yeager E, Cahan B (1983) J Electroanal Chem 150:181

    Google Scholar 

  195. Hubbard A, Stickney J (1984) Soriaga et al. J Electroanal Chem 168:43

    Article  CAS  Google Scholar 

  196. Solomun T, Richtering W, Gerischer H (1987) Ber Bunsenges Phys Chem 91:472

    Google Scholar 

  197. Durand R, Faure R, Aberdam D, Traote S (1989) Electrochim Acta 34:1653

    Article  CAS  Google Scholar 

  198. Soriaga MP (1992) Prog Surf Sci 39:325

    Article  CAS  Google Scholar 

  199. Weaver MJ, Kizhakevariam N, Villegas I (1995) Surface Sci 336:37

    Article  Google Scholar 

  200. Aldaz A, Feliu JM, Gomez R, Weaver MJ (1998) Surf Sci 410:48

    Article  Google Scholar 

  201. Kaghazchi P, Simeone FC, Soliman KA, Kibler LA, Jacob T (2008) Faraday Discuss 140:69–80

    Article  CAS  Google Scholar 

  202. Strasser P, Koh S, Greeley J (2008) Phys Chem Chem Phys 10:3670

    Article  CAS  Google Scholar 

  203. Del Popolo MG, Leiva EPM, Schmickler W (2002) J Electroanal Chem 518:84

    Article  Google Scholar 

  204. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer, New York

    Google Scholar 

  205. Volfkovich YuM, Serdyuk TM (2002) Elektrokhimiya 38:1043

    Google Scholar 

  206. Soffer A, Folman M (1972) J Electroanal Chem 38:25

    Article  CAS  Google Scholar 

  207. Frumkin AN, Korobanov AA, Vilinskaya VS, Burshtein RH (1976) Doklady AN USSR 229:153

    CAS  Google Scholar 

  208. Frumkin AN, Korobanov AA, Vilinskaya VS, Burstein RH (1978) Elektrokhimiya 14:104

    Google Scholar 

  209. Koopal IK (1996) Electrochim Acta 41:2293

    Article  CAS  Google Scholar 

  210. Petrii OA (1996) Electrochim Acta 41:230

    Article  Google Scholar 

  211. Rybalka LE, Leikis DI (1975) Elektrokhimiya 11:1619

    CAS  Google Scholar 

  212. Rybalka LE, Leikis DI, Zelinskii AG (1976) Elektrokhimiya 12:1340

    CAS  Google Scholar 

  213. Safonov VA, Komissarov LYu, Petrii OA (1996) Electrochim Acta 42:675

    Article  Google Scholar 

  214. Petrii OA, Khomchenko IG (1980) J Electroanal Chem 106:277

    CAS  Google Scholar 

  215. Murray RW (ed) (1992) Molecular design of electrode surfaces. Wiley, New York

    Google Scholar 

  216. Ramirez P, Andreu R, Cuesta A, Calzado CJ, Calvente JJ (2007) Anal Chem 79:6473

    Article  CAS  Google Scholar 

  217. Oldham KB (2008) J Electroanal Chem 613:131

    Article  CAS  Google Scholar 

  218. Kornyshev AA (2007) J Phys Chem B 111:5545

    Article  CAS  Google Scholar 

  219. Pauliukaite R, Doherty AP, Murnaghan KD, Brett CMA (2008) J Electroanal Chem 616:14

    Article  CAS  Google Scholar 

  220. Silva F, Gomes C, Figueiredo M, Costa R, Martins A (2008) Pereira. J Electroanal Chem 622:153

    Article  CAS  Google Scholar 

  221. Kitazumi J, Kakiuchi T (2010) J Electroanal Chem 648:8

    Article  CAS  Google Scholar 

  222. Conway BE (2003) J Electroanal Chem 524–525:4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg A. Petrii.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10008-011-1562-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damaskin, B.B., Petrii, O.A. Historical development of theories of the electrochemical double layer. J Solid State Electrochem 15, 1317–1334 (2011). https://doi.org/10.1007/s10008-011-1294-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1294-y

Keywords

Navigation