Skip to main content

Advertisement

Log in

Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel method of hydrothermal ammoniated treatment on the polyacrylonitrile (PAN)-based graphite felt for vanadium redox flow battery was developed. The graphite felt was treated in a Teflon-lined stainless steel autoclave for different time at 180 °C. The content of nitrogen in the PAN graphite felt changed from 3.803% to 5.367% by adjusting treatment time to 15 h in ammonia solution, while FT-IR results indicated that nitrogenous groups were introduced. The electrochemical properties of these graphite felts were characterized by cyclic voltammetry, electrochemical impedance spectroscopy, as well as cell charge and discharge tests. The energy efficiency of the treated graphite felt reached 85% at a current density of 20 mA/cm2. The corresponding coulombic efficiency and voltage efficiency were 95.3% and 75.1%, respectively. The improvement of the electrochemical properties for the treated graphite felt might be attributed to the increase of polar nitrogenous groups of carbon fiber surface, which facilitated charge transfer between electrode and vanadium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sum E, Rychcik M, Skyllas-kazacos M (1985) J Power Sources 16:85–95

    Article  CAS  Google Scholar 

  2. Sum E, Rychcik M (1985) J Power Sources 15:179–190

    Article  CAS  Google Scholar 

  3. Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG (1986) J Electrochem Soc 133:1057–1058

    Article  CAS  Google Scholar 

  4. Gattrell M, Qian J, Stewart C, Graham P, MacDougall B (2005) Electrochim Acta 51:395–407

    Article  CAS  Google Scholar 

  5. Huang KL, Li XG, Liu SQ, Tan N, Chen LQ (2008) Renewable Energy 33:186–192

    Article  CAS  Google Scholar 

  6. Kaneko H, Nozaki K, Wada Y, Aoki T, Negishi A (1991) Electrochim Acta 36:1191–1196

    Article  CAS  Google Scholar 

  7. Sun B, Skyllas-Kazacos M (1991) Electrochim Acta 36:513–517

    Article  CAS  Google Scholar 

  8. Rychcik M, Skallas-Kazacos M (1987) J Power Sources 19:45–54

    Article  CAS  Google Scholar 

  9. Sun B, Skyllas-Kazacos M (1992) Electrochim Acta 37:1253–1260

    Article  CAS  Google Scholar 

  10. Li XG, Huang KL, Liu SQ, Tang N, Chen LQ (2007) Transactions of Nonferrous Metals Society of China 17:195–199

    Article  CAS  Google Scholar 

  11. Sun B, Skyllas-Kazacos M (1992) Electrochim Acta 37:2459–2465

    Article  CAS  Google Scholar 

  12. Wang WH, Wang XD (2007) Electrochim Acta 52:6755–6762

    Article  CAS  Google Scholar 

  13. Maldonado S, Stevenson KJ (2005) J Phys Chem B 109:4707–4716

    Article  CAS  Google Scholar 

  14. Shao YY, Sui JH, Yin GP, Gao YZ (2008) Appl Catal B: Environ 79:89–99

    Article  CAS  Google Scholar 

  15. Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Science 323:760–764

    Article  CAS  Google Scholar 

  16. Sidik RA, Anderson AB, Subramanian NP, Kumaraguru SP, Popov BN (2006) J Phys Chem B 110:1787–1793

    Article  CAS  Google Scholar 

  17. Wu G, Li DY, Dai CS, Wang DL, Li N (2008) Langmuir 24:3566–3575

    Article  CAS  Google Scholar 

  18. Saha MS, Li RY, Sun XL, Ye SY (2009) Electrochem Commun 11:438–441

    Article  CAS  Google Scholar 

  19. Shi LP, Gao QM, Wu YH (2009) Electroanalysis 21:715–722

    Article  CAS  Google Scholar 

  20. Shao YY, Wang YQ, Engelhard M, Wang CM et al (2010) J Power Sources 195(13):4375–4379

    Article  CAS  Google Scholar 

  21. Chen X, Wang J, Lin M, Zhong W, Feng T, Chen J (2008) Mater Sci Eng A 492:236–242

    Article  Google Scholar 

  22. Hsieh CT, Teng H, Chen WY, Cheng YS (2010) Carbon 48:4219–4229

    Article  CAS  Google Scholar 

  23. Yao YL, Ding Y, Ye LS, Xia XH (2006) Carbon 44:61–66

    Article  Google Scholar 

  24. Vukovic G, Marinkovic A, Obradovic M, Radmilovic V, Colic M, Aleksic R (2009) Appl Surf Sci 225:8067–8075

    Article  Google Scholar 

  25. Hulicova-Jurcakova D, Kodama M, Shiraishi S, Hatori H, Zhu ZH, Lu GQ (2009) Adv Funct Mater 19:1800–1809

    Article  CAS  Google Scholar 

  26. Shafeeyana SM, Daud WMAW, Houshmanda A, Arami-Niyaa A (2011) Appl Surf Sci 257:3936–3942

    Article  Google Scholar 

  27. Figueiredo JL, Pereira MFR, Freitas MMA, Orfao JJM (1999) Carbon 37:1379–1389

    Article  CAS  Google Scholar 

  28. Ros TG, van Dillen AJ, Geus JW, Koningsberger DC (2002) Chem Eur J 8:1151–1162

    Article  CAS  Google Scholar 

  29. Yue L, Li WH, Sun FQ, Zhao LZ, Xing LD (2010) Carbon 48:3079–3090

    Article  CAS  Google Scholar 

  30. Maldonado S, Morin S, Stevenson KJ (2006) Carbon 44:1429–1437

    Article  CAS  Google Scholar 

  31. Oriji G, Katayama Y, Miura T (2004) Electrochim Acta 49:3091–3095

    Article  CAS  Google Scholar 

  32. Kaneko H, Nozaki K, Wada Y, Aoki T, Negishi A, Kamimoto M (1991) Electrochim Acta 36:1191–1196

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Major State Basic Research Development Program of China (973 Program) (No. 2010CB227201) and National Natural Science Foundation of China (No. 50972165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, T., Huang, K., Liu, S. et al. Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery. J Solid State Electrochem 16, 579–585 (2012). https://doi.org/10.1007/s10008-011-1383-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1383-y

Keywords

Navigation