Skip to main content
Log in

Formation of gold-capped silicon nanocolumns on silicon substrate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Gold-capped silicon nanocolumns regularly distributed over silicon substrate were obtained. The columns length was roughly 100 nm; their deviation from perpendicular axis was less than 2°. The diameter of the columns was of the order of 10 nm or below of that. The proposed procedure of nanostructuring included the following main steps: deposition of aluminum thin layer (100–500 nm) by magnetron sputtering on (100) oriented Si wafers; formation of porous self-ordered alumina structures by electrochemical anodizing of the Al film in oxalic acid; electroless inversion of Au in alumina pores; and reactive ion etching. The obtained Si–Au structures are of importance as the platforms for biosensing applications, while the gold-free structures are of interest in photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Collins RT, Fauchet PM, Tischler MA (1997) Phys. Today, January, pp 24–31

    Google Scholar 

  2. Canham LT (1990) Appl Phys Lett 57:1046–1048

    Article  CAS  Google Scholar 

  3. Singh P, Sharma SN, Ravindra NM (2010) JOM 62:15–24

    Article  CAS  Google Scholar 

  4. Szlufcik J, Agostinelli G, Duerinckx F, Van Kerschaver E, Beaucarne G (2005) Low cost industrial technologies of crystalline silicon solar cells. In: Markvart T, Castauer L (eds) Solar cells: materials, manufacture and operation. Elsevier Ltd., Oxford, pp 91–120

    Google Scholar 

  5. Jane A, Dronov R, Hodges A, Voelcker NH (2009) Trends Biotechnol 27:230–239

    Article  CAS  Google Scholar 

  6. Kilian KA, Böcking T, Gooding JJ (2009) Chem Commun 630–640

  7. Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Adv Drug Deliv Rev 60:1266–1277

    Article  CAS  Google Scholar 

  8. Salonen J, Kaukonen AM, Hirvonen J, Lehto VP (2008) J Pharm Sci 97:632–653

    Article  CAS  Google Scholar 

  9. Bonanno LM, DeLouise LA (2007) Biosens Bioelectron 23:444–448

    Article  CAS  Google Scholar 

  10. Lawrie L, Jiao Y, Weiss SM (2010) IEEE Trans Nanotechnol 9(5):596–602

    Article  Google Scholar 

  11. Ozdemir S, Gole JL (2007) Curr Opin Solid State Mater Sci 11:92–100

    Article  CAS  Google Scholar 

  12. Ohgi T, Sheng HY, Nejoh H (1998) Appl Surf Sci 130:919–924

    Article  Google Scholar 

  13. Veiseh M, Zareie MH, Zhang M (2002) Langmuir 18:6671–6678

    Article  CAS  Google Scholar 

  14. Xu J, Craig SL (2005) J Am Chem Soc 127:13227–13231

    Article  CAS  Google Scholar 

  15. Lytton-Jean AKR, Mirkin CA (2005) J Am Chem Soc 127:12754–12755

    Article  CAS  Google Scholar 

  16. Akamatsu K, Kimura M, Shibata Y, Nakano SI, Miyoshi D, Nawafune H, Suginoto N (2006) Nano Lett 6:491–495

    Article  CAS  Google Scholar 

  17. Yang K, Wang H, Zou K, Zhang X (2006) Nanotechnology 17:S276–S279

    Article  CAS  Google Scholar 

  18. Ryu SW, Kim CH, Han JW, Kim CJ, Jung C, Park HG, Choi YK (2010) Biosens Bioelectron 25:2182–2185

    Article  CAS  Google Scholar 

  19. Yan S, He N, Song Y, Zhang Z, Qian J, Xiao Z (2010) J Electroanal Chem 641:136–140

    Article  CAS  Google Scholar 

  20. Jiao Y, Koktysh DS, Phambu N, Weiss S (2010) Appl Phys Lett 97:153125–3

    Article  Google Scholar 

  21. Martins R, Baptista P, Raniero L, Doria G, Silva L, Franco R, Fortunato E (2007) Appl Phys Lett 90:023903–3

    Article  Google Scholar 

  22. Kayes BM, Atwater HA, Lewis NS (2005) J Appl Phys 97:114302–114311

    Article  Google Scholar 

  23. Maiolo JR III, Atwater HA, Lewis NS (2008) J Phys Chem C 112:6194–6201

    Article  CAS  Google Scholar 

  24. Tsakalakos L, Balch J, Franheiser J, Korevaar B, Sulima O, Rand J (2007) Appl Phys Lett 91:233117

    Article  Google Scholar 

  25. Peng K, Yan Y, Gao S, Zhu J (2003) Adv Funct Mat 13(2):127–132

    Article  CAS  Google Scholar 

  26. Huang Z, Fang H, Zhu J (2007) Adv Mater 19:744–748

    Article  CAS  Google Scholar 

  27. Masuda H, Fukuda K (1995) Science 268:1466–1468

    Article  CAS  Google Scholar 

  28. Masuda H, Hasegwa F, Ono S (1997) J Electrochem Soc 144:L127–L130

    Article  CAS  Google Scholar 

  29. Ono S, Saito M, Asoh H (2005) Electrochim Acta 51:827–833

    Article  CAS  Google Scholar 

  30. Chu Z, Wada K, Inoue S, Isogai M, Katsuta K, Yasumuri A (2006) J Electrochem Soc 153:B384–B391

    Article  CAS  Google Scholar 

  31. Jessensky O, Muller F, Gösele U (1998) J Electrochem Soc 145(11):3735–3740

    Article  CAS  Google Scholar 

  32. Jessensky O, Muller F, Gösele U (1998) Appl Phys Lett 72:1173–1175

    Article  CAS  Google Scholar 

  33. Meng G, Jung YJ, Cao A, Vajtai R, Ajayan PM (2005) PNAS 102(20):7074–7078

    Article  CAS  Google Scholar 

  34. Keller F, Hunter MS, Robinson DL (1953) J Electrochem Soc 100:411–419

    Article  CAS  Google Scholar 

  35. Diggle J, Downie T, Goulding C (1969) Chem Rev 69(3):365–405

    Article  CAS  Google Scholar 

  36. O’Sullivan J, Wood GC (1970) Proc R Soc Lon A317:511–543

    Article  Google Scholar 

  37. Hoar T, Mott N (1959) J Phys Chem Solids 9:97–99

    Article  CAS  Google Scholar 

  38. Shimuzu K, Kobayashi K, Tompson GE, Wood GC (1992) Phil Mag A 6:643–652

    Article  Google Scholar 

  39. Li AP, Muller F, Birner A, Nielsch K, Gösele U (1998) J Appl Phys 84:6023–6026

    Article  CAS  Google Scholar 

  40. Garcia-Vergara SJ, Iglesias-Rubianes L, Blanco-Pinzon CE, Skeldon P, Thompson GE, Campestrini P (2006) Proc R Soc A 462:2345–2358

    Article  CAS  Google Scholar 

  41. Masuda H, Satoh M (1996) Jpn J ApplPhys 35:L126–L129

    Article  CAS  Google Scholar 

  42. Zhu R, Pang YT, Feng YS, Fu GH, Li Y, Zhang LD (2003) Chem Phys Lett 368:696–700

    Article  CAS  Google Scholar 

  43. Shingubara Sh, Murakami Y, Morimoto K, Takahagi T (2003) Surf Sci 532–535:317–323

    Article  Google Scholar 

  44. Nakao M, Oku S, Tamaura T, Yasui K, Masuda H (1999) Jpn J Appl Phys 38:1052–1055

    Article  CAS  Google Scholar 

  45. Mei X, Blumin M, Kim D, Wu Zh, Ruda H (2003) J Cryst Growth 251:253–257

    Article  CAS  Google Scholar 

  46. Gao SY, Li HD, Yuan JJ, Li YA, Yang XX, Liu JW (2010) Appl Surf Sci 256:2781–2785

    Article  CAS  Google Scholar 

  47. Das B (2004) J Electrochem Soc 151(6):D46–D50

    Article  CAS  Google Scholar 

  48. Nagahara L, Ohmori T, Hashimoto K, Fujishima A (1992) J Electroanal Chem 333:363

    Article  CAS  Google Scholar 

  49. Nagahara L, Ohmori T, Hashimoto K, Fujishima A (1993) J Vac Sci Technol A11:763

    Google Scholar 

  50. Wiggers H, Lorke A (2011) Silicon nanocrystals. In: Sattler K (ed) Handbook of physics. Nanoparticles and quantum dots, CRC Press, Taylor & Francis Group, pp 5–1

Download references

Acknowledgments

The study was supported by the Lithuanian State Science and Studies Foundation (Contract No. AUT-18/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Juzeliunas.

Additional information

This paper is dedicated to the 65th birthday of Professor G. Inzelt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leinartas, K., Miečinskas, P., Selskis, A. et al. Formation of gold-capped silicon nanocolumns on silicon substrate. J Solid State Electrochem 15, 2419–2425 (2011). https://doi.org/10.1007/s10008-011-1442-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1442-4

Keywords

Navigation