Skip to main content
Log in

Inorganic-based sol–gel synthesis of nano-structured LiFePO4/C composite materials for lithium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An inorganic and non-toxic compounds combination of FeCl2·4H2O, Li2CO3 and H3PO4 was chosen to synthesize homogeneous nano-structured LiFePO4/C composite material via a simplified sol–gel route. The dependency of the physicochemical properties and the corresponding electrochemical responses on the residual carbon content were investigated in details. Rietveld refinement of X-ray diffraction measurement and X-ray photoelectron spectroscopy analysis confirmed the feasibility of preparing pure LiFePO4 phase via this approach. With increasing amount of residual carbon, the particles size gradually decreased and the bulk electrical conductivity monotonically increased. However, the higher level of residual carbon would bring disadvantageous impact on the lithium ion diffusion. Due to high electrical conductivity, controlled particle size and suitable microstructure, the sample with 4.5 wt.% residual carbon exhibited stable cycling performance and delivered high discharge capacity of 163, 119 and 108 mA h g−1 at 0.1 C, 5 C and 10 C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Broussely M, Perton F, Biensan P, Bodet JM, Labat J, Lecerf A, Delmas C, Rougier A, Pérès JP (1995) J Power Sources 54(1):109–114

    Article  CAS  Google Scholar 

  2. Thackeray MM, Johnson PJ, De Picciotto LA, Bruce PG, Goodenough JB (1984) Mater Res Bull 19(2):179–187

    Article  CAS  Google Scholar 

  3. Padhi AK, Nanjundaswarmy KS, Goodenough JB (1997) J Electorchem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  4. Eills B, Subramanya Herle P, Rho YH, Nazar LF, Dunlap R, Perry LK, Ryan DH (2007) Faraday Symp Chem Soc 34:119–141

    Google Scholar 

  5. Andersson AS, Kalska B, Häggström L, Thomas JO (2000) Solid State Ionics 130:41–52

    Article  CAS  Google Scholar 

  6. Giorgetti M, Berrettoni M (2006) Inorg Chem 45:2750–2757

    Article  CAS  Google Scholar 

  7. Prosini PP, Lisi M, Zane D, Pasquali M (2002) Solid State Ionics 148:45–51

    Article  CAS  Google Scholar 

  8. Chen JM, Hsu CH, Lin YR, Hsiao MH, Fey GTK (2008) J Power Sources 184:498–502

    Article  CAS  Google Scholar 

  9. Wang GX, Yang Y, Chen JZ, Beylay S, Liu HK (2005) Electrochim Acta 50:4649–4654

    Article  CAS  Google Scholar 

  10. Sung WO, Seung TM, Seung MH, Oh S-M, Oh KH, Amine K, Scrosati B, Sun YK (2010) Adv Mater 22:4842–4845

    Article  Google Scholar 

  11. Zhao JQ, He JP, Zhou JH, Guo YX, Wang T, Wu SC, Ding XC, Huang RM, Xue HR (2011) J Phys Chem C 115:2888–2894

    Article  CAS  Google Scholar 

  12. Sides CR, Croce F, Yong VY, Martin CR, Scrosati B (2005) Electrochem Solid-State Lett 8:A484–A487

    Article  CAS  Google Scholar 

  13. Yang M, Gao QM (2011) J Alloys Compd 509:3690–3698

    Article  CAS  Google Scholar 

  14. Dimesso L, Jacke S, Spanheimer C, Jaegermann W (2011) J Alloys Compd 509:3777–3782

    Article  CAS  Google Scholar 

  15. Yamada A, Kudo Y, Liu KY (2001) J Electrochem Soc 148(10):A1153–A1158

    Article  CAS  Google Scholar 

  16. Chung SY, Bloking JT, Chiang YM (2002) Nat Mater 1:123–128

    Article  CAS  Google Scholar 

  17. Yang MR, Ke WH (2008) J Electrochem Soc 155(10):A729–A732

    Article  CAS  Google Scholar 

  18. Meethong N, Kao YH, Speakman SA, Chiang YM (2009) Adv Funct Mater 19:1060–1070

    Article  CAS  Google Scholar 

  19. Arumugam D, Paruthimal KG, Manisanker P (2009) J Solid State Electrochem 13:301–307

    Article  CAS  Google Scholar 

  20. Sun CS, Zhou Z, Xu ZG, Wang DG, Wei JP, Bian XK, Yan J (2009) J Power Source 193:841–845

    Article  CAS  Google Scholar 

  21. Yang L, Jiao LF, Miao YL, Yuan HT (2009) J Solid State Electrochem 13:1541–1544

    Article  CAS  Google Scholar 

  22. Sun CS, Zhang Y, Zhang XJ, Zhou Z (2010) J Power Source 195:3680–3683

    Article  CAS  Google Scholar 

  23. Liao XZ, He YS, Ma ZF, Zhang XM, Wang L (2007) J Power Source 174:720–725

    Article  CAS  Google Scholar 

  24. Choi D, Kumta PN (2007) J Power Sources 163:1064–1069

    Article  CAS  Google Scholar 

  25. Seung AH, Su JK, Jaehoo K, Chung KY, Cho B-W, Kang JW (2010) J Supercrit Fluids 55:1027–1037

    Google Scholar 

  26. Gómez LS, Meatza ID, Martín MI, Bengoechea M, Cantero I, Rabanal ME (2010) Electrochim Acta 55:2805–2809

    Article  Google Scholar 

  27. Mestre AF, Hamelet S, Mascquerlier C, Palacin MR (2010) J Power Sources 195:6897–6901

    Article  Google Scholar 

  28. Sabina B, Libero D, Marina M (2008) J Power Sources 180:875–879

    Article  Google Scholar 

  29. Liu HP, Wang ZX, Li XH, Guo HJ, Peng WJ, Zhang YH, Hu QY (2008) J Power Sources 184:469–472

    Article  CAS  Google Scholar 

  30. Liu YY, Cao CB (2010) Electrochim Acta 55:4694–4699

    Article  CAS  Google Scholar 

  31. Zhecheva E, Mladenov M, Zlatilova P, Koleva V, Stoyanova R (2010) J Phys Chem Solids 71:848–853

    Article  CAS  Google Scholar 

  32. Beninati S, Damen L, Mastragostino M (2008) J Power Source 180:875–879

    Article  CAS  Google Scholar 

  33. Sanchez MAE, Brito GES, Fantini MCA, Goya GF, Matos JR (2006) Solid State Ionics 177:497–500

    Article  CAS  Google Scholar 

  34. Kuwahara A, Suzuki S, Miyayama M (2010) J Electroceram 24:69–75

    Article  CAS  Google Scholar 

  35. Kim J-K, Choi J-W, Chauhan GS, Ahn J-H, Hwang GC, Choi JB, Ahn H-J (2008) Electrochim Acta 53:8258–8264

    Article  CAS  Google Scholar 

  36. Sundarayya Y, Kumara Swamy KC, Sundana CS (2007) Mater Res Bull 42:1942–1948

    Article  CAS  Google Scholar 

  37. Croce F, Epifanio AD, Hassoun J, Deptula A, Olczac T, Scrosati B (2002) Electrochem Solid-State Lett 5(3):A47–A50

    Article  CAS  Google Scholar 

  38. Li XL, Wang WD, Shi CW, Wang H, Xing Y (2009) J Solid State Electrochem 13:921–926

    Article  CAS  Google Scholar 

  39. Bewlay SL, KonstantinoV K, Wang GX, Dou SX, Liu HK (2004) Mater Lett 58(11):1788–1791

    Article  CAS  Google Scholar 

  40. Bhuvaneswari MS, Bramink NN, Ensling D, Ehrenberg H, Jaegermann W (2008) J Power Sources 180:553–560

    Article  CAS  Google Scholar 

  41. Qian JG, Zhou M, Cao YL, Ai XP, Yang HX (2010) J Phys Chem 114:3477–3482

    CAS  Google Scholar 

  42. Zhou XF, Wang F, Zhu YM, Liu ZP (2011) J Mater Chem 21:3353–3358

    Article  CAS  Google Scholar 

  43. Wang YG, Wang YR, Hosono E, Wang KX, Zhou HS (2008) Angew Chem Int Ed 47:7461–7465

    Article  CAS  Google Scholar 

  44. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York, p 231

    Google Scholar 

Download references

Acknowledgements

We thank the financial support from National Nature Science Foundation of China under Grant (No. 50632040 and No. 50802049) and Shenzhen Technical Plan Project (NO. JP200806230010A and No. SG200810150054A). We also appreciate the financial support from Guangdong Province Innovation R&D Team Plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feiyu Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Li, B., Du, H. et al. Inorganic-based sol–gel synthesis of nano-structured LiFePO4/C composite materials for lithium ion batteries. J Solid State Electrochem 16, 1353–1362 (2012). https://doi.org/10.1007/s10008-011-1491-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1491-8

Keywords

Navigation