Skip to main content

Advertisement

Log in

Electrochemical capacitance performance of polypyrrole–titania nanotube hybrid

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, the polypyrrole–titania nanotube hybrid has been synthesized for an electrochemical supercapacitor application. The highly ordered and independent titania nanotube array is fabricated by an electro-oxidation of titanium sheet through an electrochemical anodization process in an aqueous solution containing ammonium fluoride, phosphoric acid and ethylene glycol. The polypyrrole–titania nanotube hybrid is then prepared by electrodepositing the conducting polypyrrole into well-aligned titania nanotubes through a normal pulse voltammetry deposition process in an organic acetonitrile solution containing pyrrole monomer and lithium perchlorate. The morphology and microstructure of polypyrrole–titania nanotube hybrid are characterized by scanning electron microscopy, infrared spectroscopy and Raman spectroscopy. The electrochemical capacitance performance is determined by cyclic voltammetry and charge/discharge measurement. It indicates that the polypyrrole film can been uniformly deposited on both surfaces of titania nanotube walls, demonstrating a heterogeneous coaxial nanotube structure. The specific capacitance of polypyrrole–titania nanotube hybrid is determined to be 179 F g−1 based on the polypyrrole mass. The specific energy and specific power are 7.8 Wh kg−1 and 2.8 kW kg−1 at a constant charge/discharge current of 1.85 mA cm−2, respectively. The retained specific capacitance still keeps 85% of the initial capacity even after 200 cycle numbers. This result demonstrates the satisfying stability and durability of PPy–TiO2 nanotube hybrid electrode in a cyclic charge/discharge process. Such a composite electrode material with highly ordered and coaxial nanotube hybrid structure can contribute high energy storage for supercapacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Hall PJ, Mirzaeian M, Fletcher SI, Sillars FB, Rennie AJR, Shitta-Bey GO, Wilson G, Cruden A, Carter R (2010) Energ Environ Sci 3:1238–1251

    Article  CAS  Google Scholar 

  3. Inagaki M, Konno H, Tanaike O (2010) J Power Sources 195:7880–7903

    Article  CAS  Google Scholar 

  4. Snook GA, Kao P, Best AS (2010) J Power Sources 196:1–12

    Article  Google Scholar 

  5. Frackowiak E, Beguin F (2001) Carbon 39:937–950

    Article  CAS  Google Scholar 

  6. Mastragostino M, Arbizzani C, Soavi F (2001) J Power Sources 97–98:812–815

    Article  Google Scholar 

  7. Han YQ, Hao LA, Zhang XG (2010) Synth Met 160:2336–2340

    Article  CAS  Google Scholar 

  8. Dziewonski PM, Grzeszczuk M (2010) Electrochim Acta 55:3336–3347

    Article  CAS  Google Scholar 

  9. Kowalski D, Schmuki P (2010) Chem Commun 46:8585–8587

    Article  CAS  Google Scholar 

  10. Xie YB, Huang CJ, Zhou LM, Liu Y, Huang HT (2009) Compos Sci Technol 69:2108–2114

    Article  CAS  Google Scholar 

  11. Xie Y, Zhou L, Huang C, Huang H, Lu J (2008) Electrochim Acta 53:3643–3649

    Article  CAS  Google Scholar 

  12. He XM, Shi GQ (2006) Sensor Actuator B Chem 115:488–493

    Article  Google Scholar 

  13. Yuvaraj H, Park EJ, Gal YS, Lim KT (2008) Colloid Surf A Physicochem Eng Asp 313:300–303

    Article  Google Scholar 

  14. Su PG, Huang LN (2007) Sensor Actuator B Chem 123:501–507

    Article  Google Scholar 

  15. Lu X, Mao H, Zhang W (2007) Nanotechnology 18:025604

    Article  Google Scholar 

  16. Kim MS, Park JH (2011) J Nanosci Nanotechnol 11:4522–4526

    Article  CAS  Google Scholar 

  17. Lee YK, Lee KJ, Kim DS, Lee DJ, Kim JY (2010) Synth Met 160:814–818

    Article  CAS  Google Scholar 

  18. Dai T, Yang X, Lu Y (2006) Nanotechnology 17:3028–3034

    Article  CAS  Google Scholar 

  19. Wang D, Ye Q, Yu B, Zhou F (2010) J Mater Chem 20:6910–6915

    Article  CAS  Google Scholar 

  20. Shankar K, Mor GK, Prakasam HE, Varghese OK, Grimes CA (2007) Langmuir 23:12445–12449

    Article  CAS  Google Scholar 

  21. Xie YB, Fu DG (2010) Mater Chem Phys 122:23–29

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (no. 20871029), Research Fund for the Doctoral Program of Higher Education of China (no. 200802861071), Program for New Century Excellent Talents in University of the State Ministry of Education (no. NCET-08-0119), Science and Technology Program of Suzhou City (no. SYG201017) and the Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibing Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Du, H. Electrochemical capacitance performance of polypyrrole–titania nanotube hybrid. J Solid State Electrochem 16, 2683–2689 (2012). https://doi.org/10.1007/s10008-012-1696-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1696-5

Keywords

Navigation