Skip to main content
Log in

Electrochemical deposition of nanosemiconductor CuSe on multiwalled carbon nanotubes/polyimide membrane and photoelectric property researches

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanosemiconductor CuSe were prepared on self-made multiwalled carbon nanotubes/polyimide (COOH-MWCNTs/PI) membrane electrode by electrochemical atomic layer deposition (EC-ALD). By exploring the elements, electrochemical properties through cyclic voltammetry and differential pulse-stripping voltammetry, -0.2 and -0.55 V are finally identified as the deposition potential of copper and selenium, respectively. Current density − time curve obtained via amperometric It processes indicates the formation of copper layer by a two-dimensional nucleation and growth mechanism, while selenium growth is considered to be diffusion control process. X-ray powder diffraction data reveals the preferred orientation of the CuSe crystal is at (112) plane. Field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis show that the obtained CuSe thin film are short virgate nanostructure, and the average atomic percentage of Cu:Se is close to one. Furthermore, the ultraviolet visible (UV–Vis) transmission measurements provide a band gap of 2.0 eV. Open-circuit potential (OCP) and amperometric It experiments illustrate the CuSe thin film to be p-type semiconductor. Obtained results indicate that the CuSe thin film depositing on COOH-CNTs/PI membrane is appropriate to serve as the solar energy transfer material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Neyvasagam K, Soundararajan N (2008) Ajaysoni, Okram GS, GanesanV. Phys Status Solidi B 245:77–81

    Article  CAS  Google Scholar 

  2. Ambade SB, Mane RS, Kale SS, Sonawane SH, Shaikh AV, Han SH (2006) Appl Surf Sci 253:2123–2126

    Article  CAS  Google Scholar 

  3. Gosavi SR, Deshpande NG, Gudage YG, Sharma R (2008) J Alloys Compd 448:344–348

    Article  CAS  Google Scholar 

  4. Haram SK, Santhanam KSV, Spallart MN, Clement CL (1992) Mater Res Bull 27:1185–1191

    Article  CAS  Google Scholar 

  5. Yang YJ, Hu SS (2009) J Solid State Electrochem 13:477–483

    Article  CAS  Google Scholar 

  6. Bhuse VM, Hankare PP, Garadkar KM, Khomane AS (2003) Mater Chem Phys 80:82–88

    Article  CAS  Google Scholar 

  7. Gosavi SR, Deshpande NG, Gudage YG, Sharma R (2008) J Alloys Compd 448:344–348

    Article  CAS  Google Scholar 

  8. Lakshmikumar ST (1994) Sol Energy Mater Sol Cells 32:7–19

    Article  CAS  Google Scholar 

  9. Abdullaev GB, Aliyarova ZA, Asadov GA (1967) Phys Status Solidi B 21:461–464

    Article  CAS  Google Scholar 

  10. García VM, Nair PK, Nair MTS (1999) J Cryst Growth 203:113–124

    Article  Google Scholar 

  11. Vinod TP, Jin X, Kim J (2011) Mater Res Bull 46:340–344

    Article  CAS  Google Scholar 

  12. Hankare PP, Khomane AS, Chate PA, Rathod KC, Garadkar KM (2009) J Alloys Compd 469:478–482

    Article  CAS  Google Scholar 

  13. Haram SK, Santhanam KSV (1994) Thin Solid Films 238:21–26

    Article  CAS  Google Scholar 

  14. Massaccesi S, Sanchez S, Vedel J (1993) J Electrochem Soc 140:2540–2546

    Article  CAS  Google Scholar 

  15. Tonejc A, Ogorelec Z, Mestnik B (1975) Appl Cryst 8:375–379

    Article  Google Scholar 

  16. Vohl P, Perkins DM, Ellis SG, Addiss RR, Huis W, Noel G (1967) IEEE Trans Electron Dev 14:26–30

    Article  CAS  Google Scholar 

  17. Okimura H, Matsumae T, Makabe R (1980) Thin Solid Films 71:53–59

    Article  CAS  Google Scholar 

  18. Malik MA, O’Brien P, Revaprasadu N (1999) Adv Mater 11:1441–1444

    Article  CAS  Google Scholar 

  19. Kim JY, Kim YG, Stickney JL (2008) Electroanal Chem 621:205–213

    Article  CAS  Google Scholar 

  20. Mathe MK, Cox SM Jr, Flowers BH, Vaidyanathan R, Pham L, Srisook N, Happek U, Stickney JL (2004) J Cryst Growth 271:55–64

    Article  CAS  Google Scholar 

  21. Loglio F (2004) InnocentiM, Pezzatini G, Foresti ML. J Electroanal Chem 562:117–125

    Article  CAS  Google Scholar 

  22. Kou HH, Jiang YM, Li JJ, Yu SJ, Zheng ZX, Wang CM (2011) Electrochim Acta 56:5575–5581

    Article  CAS  Google Scholar 

  23. Ye WC, Tong H, Wang CM (2005) Microchim Acta 152:85–88

    Article  CAS  Google Scholar 

  24. Jing F, Tong H, Wang CM (2004) J Solid State Electrochem 8:877–881

    Article  CAS  Google Scholar 

  25. Huang BM, Lister TE, Stickney JL (1997) Surf Sci 392:27–43

    Article  CAS  Google Scholar 

  26. Riveros G, Henriquez R, Cordova R, Schrebler R, Dalchiele EA, Gomez H (2001) J Electroanal Chem 504:160–165

    Article  CAS  Google Scholar 

  27. Shi XZ, Zhang X, Ma CL, Wang CM (2010) J Solid State Electrochem 14:93–99

    Article  CAS  Google Scholar 

  28. Demir U, Shannon C (1996) Langmuir 12:6091–6097

    Article  CAS  Google Scholar 

  29. Gomez H, Henriquez R, Schrebler R, Cordova R, Ramirez D, Riveros G, Dalchiele EA (2005) Electrochim Acta 50:1299–1305

    Article  CAS  Google Scholar 

  30. Tang J, Zheng JJ, Xu W, Tian XC, Lin JH (2011) Acta Phys Chim Sin 27(11):2613–2617

    CAS  Google Scholar 

  31. Jagminas A, Juskenas R, Gailiute I, Statkuteb G, Tomasiunas R (2006) J Cryst Growth 294:343–348

    Article  CAS  Google Scholar 

  32. Haram SK, Santhanam KSV (1994) Thin Solid Films 238:21–26

    Article  CAS  Google Scholar 

  33. Zhang X, Shi XZ, Ye WC, Ma CL, Wang CM (2009) Appl Phys A 94:381–386

    Article  CAS  Google Scholar 

  34. Guillen C (2002) Herrero. J Sol Energy Mater Sol Cells 73:141–149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51072073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

(PDF 109 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Kou, H., Jiang, Y. et al. Electrochemical deposition of nanosemiconductor CuSe on multiwalled carbon nanotubes/polyimide membrane and photoelectric property researches. J Solid State Electrochem 16, 3097–3103 (2012). https://doi.org/10.1007/s10008-012-1748-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1748-x

Keywords

Navigation