Skip to main content
Log in

Influence of borohydride concentration on the synthesized Au/graphene nanocomposites for direct borohydride fuel cell

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Au/graphene nanocomposites are prepared via a one-pot chemical reduction process at room temperature, using graphene oxide (GO) and chloroauric acid (HAuCl4) as precursors. The obtained Au/graphene nanocomposites are characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). TEM shows that the Au nanoparticles with size of approximately 8.7 nm disperse randomly on the surface of graphene. XPS confirms that the Au/graphene nanocomposites show a higher atomic percentage of C/O (6.3/1), in contrast to its precursor GO (2.2/1). Electrochemical studies reveal that the Au/graphene nanocomposites have electrochemically active surface area of 9.82 m2 g−1. Besides, the influence of borohydride concentration on the as-prepared Au/graphene nanocomposites is investigated in details by cyclic voltammetry, chronoamperometry, and chronopotentiometry. The results indicate that high concentration of borohydride can significantly improve the electrochemical performance of the Au/graphene catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhang J, Yang H, Fang J, Zou S (2010) Synthesis and oxygen reduction activity of shape-controlled Pt(3)Ni nanopolyhedra. Nano Lett 10:638–644

    Article  CAS  Google Scholar 

  2. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal, B 56:9–35

    Article  CAS  Google Scholar 

  3. Duteanu N, Vlachogiannopoulos G, Shivhare MR, Yu EH, Scott K (2007) A parametric study of a platinum ruthenium anode in a direct borohydride fuel cell. J Appl Electrochem 37:1085–1091

    Article  CAS  Google Scholar 

  4. Lee H, Park S, Park K, Jung UH, Chun K, Woong C (2008) Development of Au−Pd catalysts supported on carbon for a direct borohydride fuel cell. Res Chem Intermed 34:787–792

    Article  CAS  Google Scholar 

  5. Wang GJ, Gao YZ, Wang ZB, Du CY, Wang JJ, Yin GP (2010) Investigation of PtNi/C anode electrocatalysts for direct borohydride fuel cell. J Power Sources 195:185–189

    Article  CAS  Google Scholar 

  6. Liu Z, Shamsuzzoha M, Ada ET, Reichert WM, Nikles DE (2007) Synthesis and activation of Pt nanoparticles with controlled size for fuel cell electrocatalysts. J Power Sources 164:472–480

    Article  CAS  Google Scholar 

  7. Du HY, Wang CH, Hsu HC, Chang ST, Chen US, Yen SC (2008) Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation. Diamond Relat Mater 17:535–541

    Article  CAS  Google Scholar 

  8. Stakheev AY, Kustov LM (1999) Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s. Appl Catal A 188:3–35

    Article  CAS  Google Scholar 

  9. Srinivasan C (2007) Graphene–Mother of all graphitic materials. Curr Sci 92:1338–1339

    CAS  Google Scholar 

  10. Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112:5263–5266

    Article  CAS  Google Scholar 

  11. Fang Y, Guo S, Zhu C, Zhai Y, Wang E (2010) Self-Assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: A two-Dimensional Heterostructure for Hydrogen Peroxide Sensing. Langmuir 26:11277–11282

    Article  CAS  Google Scholar 

  12. Zhang S, Shao Y, Liao HG, Liu J, Aksay IA, Yin G (2011) graphene decorated with PtAu alloy nanoparticles: Facile synthesis and promising application for formic acid oxidation. Chem Mater 23:1079–1081

    Article  CAS  Google Scholar 

  13. Guo S, Dong S, Wang E (2009) Three-Dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4:547–555

    Article  Google Scholar 

  14. Yoo E, Okata T, Akita T, Kohyama M, Nakamura J, Honma I (2009) Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett 9:2255–2259

    Article  CAS  Google Scholar 

  15. Xu C, Wang X, Zhu J (2008) Graphene−Metal particle nanocomposites. J Phys Chem C 112:19841–19845

    Article  CAS  Google Scholar 

  16. Venkateswara Rao C, Cabrera CR, Ishikawa Y (2011) Graphene−Supported Pt–Au alloy nanoparticles: A highly efficient anode for direct formic acid fuel cells. J Phys Chem C 115:21963–21970

    Article  CAS  Google Scholar 

  17. Shang N, Papakonstantinou P, Wang P, Silva SRP (2010) Platinum integrated graphene for methanol fuel cells. J Phys Chem C 114:15837–15841

    Article  CAS  Google Scholar 

  18. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  19. Li D, Kaner RB (2008) Graphene–based materials. Science 320:1170–117

    Article  CAS  Google Scholar 

  20. Zhou X, Huang X, Qi X, Wu S, Xue C (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113:10842–10846

    Article  CAS  Google Scholar 

  21. Wang G, Yang J, Park J, Gou X, Wang B (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195

    Article  CAS  Google Scholar 

  22. Jeong HK, Jin MH, An KH, Lee YH (2009) Structural stability and variable dielectric constant in poly sodium 4-styrensulfonate intercalated graphite oxide. J Phys Chem C 113:13060–13064

    Article  CAS  Google Scholar 

  23. Tang H, Ehlert GJ, Lin Y, Sodano HA (2011) Highly efficient synthesis of graphene nanocomposites. Nano Lett 12:84–90

    Article  Google Scholar 

  24. Sharma S, Ganguly A, Papakonstantinou P, Miao X, Li M, Hutchison JL (2010) Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol. J Phys Chem C 114:19459–19466

    Article  CAS  Google Scholar 

  25. Vinodgopal K, Neppolian B, Lightcap IV, Grieser F, Ashokkumar M, Kamat PV (2010) Sonolytic design of graphene−au nanocomposites. Simultaneous and sequential reduction of graphene oxide and Au(III). J Phys Chem Lett 1:1987–1993

    Article  CAS  Google Scholar 

  26. Park S, An J, Jung I, Piner RD, An SJ (2009) colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597

    Article  CAS  Google Scholar 

  27. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840

    Article  CAS  Google Scholar 

  28. Luo DC, Zhang GX, Liu JF, Sun XM (2011) Evaluation criteria for reduced graphene oxide. J Phys Chem C 115:11327–11335

    Article  CAS  Google Scholar 

  29. He P, Wang Y, Wang X, Pei F, Wang H, Liu L (2011) Investigation of carbon supported Au–Ni bimetallic nanoparticles as electrocatalyst for direct borohydride fuel cell. Evaluation Criteria for Reduced Graphene Oxide. J Power Sources 196:1042–1047

    Article  CAS  Google Scholar 

  30. Maye M, Kariuki N, Luo J, Han L (2004) Electrocatalytic reduction of oxygen: Gold and gold-platinum nanoparticle catalysts prepared by two-phase protocol. Gold Bull 37:217–223

    Article  CAS  Google Scholar 

  31. Papadimitriou S, Tegou A, Pavlidou E, Armyanov S (2008) Preparation and characterisation of platinum- and gold-coated copper, iron, cobalt and nickel deposits on glassy carbon substrates. Electrochim Acta 53:6559–6567

    Article  CAS  Google Scholar 

  32. Girishkumar G, Rettker M, Underhile R, Binz D (2005) Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells. Langmuir 21:8487–8494

    Article  CAS  Google Scholar 

  33. Zhang Z, Chen H, Xing C, Guo M, Xu F (2011) Sodium citrate: A universal reducing agent for reduction / decoration of graphene oxide with au nanoparticles. Nano Res 4:599–611

    Article  CAS  Google Scholar 

  34. Előd G (2004) Electrooxidation of borohydride on platinum and gold electrodes: implications for direct borohydride fuel cells. Electrochim Acta 49:965–978

    Article  Google Scholar 

  35. Cheng H, Scott K (2006) Influence of operation conditions on direct borohydride fuel cell performance. J Power Sources

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51072173), Doctoral Fund of Ministry of Education of China (Grant No. 20094301110005), and Key project of Education Department of Hunan Province (Grant No. 11A118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyou Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Wang, X., He, P. et al. Influence of borohydride concentration on the synthesized Au/graphene nanocomposites for direct borohydride fuel cell. J Solid State Electrochem 16, 3929–3937 (2012). https://doi.org/10.1007/s10008-012-1840-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1840-2

Keywords

Navigation