Skip to main content
Log in

Fe–N/C nanofiber electrocatalysts with improved activity and stability for oxygen reduction in alkaline and acid solutions

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Fe–N/C nanofiber (Fe–N/CNF) electrocatalysts were prepared by impregnating electrospun polyacrylonitrile nanofibers with iron nitrate (Fe(NO3)3) solution and subsequent heat treatment, exhibiting improved activity and stability during oxygen reduction reaction (ORR) both in 0.1 M KOH (pH = 13) and 0.5 M H2SO4 (pH = 0) electrolyte solutions. Higher treatment temperature and NH3 atmosphere were preferred by the Fe–N/CNF catalysts, and especially the concentration of Fe(NO3)3 solution exerted great effects on the surface morphology, structure, and thus electrocatalytic performance of the catalysts. The Fe–N/CNFs prepared using 0.5 wt% Fe(NO3)3 solution showed relatively higher ORR activity in alkaline and acid solutions and better stability especially in 0.5 M H2SO4 solution than the catalyst without Fe, probably because Fe could promote the graphitization of the polymer-converted carbon species, enhancing the resistance to electrochemical oxidation and thus the stability of the Fe–N/CNF catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang B (2005) J Power Sources 152:1–15

    Article  CAS  Google Scholar 

  2. Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Science 323:760–764

    Article  CAS  Google Scholar 

  3. Byon HR, Suntivich J, Shao-Horn Y (2011) Chem Mater 23:3421–3428

    Article  CAS  Google Scholar 

  4. Liu RL, Malotki CV, Arnold L, Koshino N, Higashimura H, Baumgarten M, Müllen K (2010) J Am Chem Soc 133:10372–10375

    Article  Google Scholar 

  5. Liu RL, Wu DQ, Feng XL, Müllen K (2010) Angew Chem Int Ed 49:2565–2569

    Article  CAS  Google Scholar 

  6. Yu DS, Zhang Q, Dai LM (2010) J Am Chem Soc 132:15127–15129

    Article  CAS  Google Scholar 

  7. Kruusenberg I, Matisen L, Jiang H, Huuppola M, Kontturi K, Tammeveski K (2010) Electrochem Commun 12:920–923

    Article  CAS  Google Scholar 

  8. Bezerra CWB, Zhang L, Lee K, Liu HS, Marques ALB, Marques EP, Wang HJ, Zhang JJ (2008) Electrochim Acta 53:4937–4951

    Article  CAS  Google Scholar 

  9. Liu GCK, Dahn JR (2008) Appl Catal A Gen 347:43–49

    Article  CAS  Google Scholar 

  10. Wu G, More KL, Johnston CM, Zelenay P (2011) Science 332:443–447

    Article  CAS  Google Scholar 

  11. Wu G, Johnston CM, Mack NH, Artyushkova K, Ferrandon M, Nelson M, Lezama-Pacheco JS, Conradson SD, More KL, Myers DJ, Zelenay P (2011) J Mater Chem 21:11392–11405

    Article  CAS  Google Scholar 

  12. Martins Alves MC, Dodelet JP, Guay D, Ladouceur M, Tourillon G (1992) J Phys Chem 96:10898–10905

    Article  Google Scholar 

  13. Wang H, Côté R, Faubert G, Guay D, Dodelet JP (1999) J Phys Chem B 103:2042–2049

    Article  CAS  Google Scholar 

  14. Lefèvre M, Dodelet JP (2002) J Phys Chem B 106:8705–8713

    Article  Google Scholar 

  15. Jaouen F, Marcotte S, Dodelet JP, Lindbergh G (2003) J Phys Chem B 107:1376–1386

    Article  CAS  Google Scholar 

  16. Médard C, Lefèvre M, Dodelet JP, Jaouen F, Lindbergh G (2006) Electrochim Acta 51:3202–3213

    Article  Google Scholar 

  17. Lefèvre M, Proietti E, Jaouen F, Dodelet JP (2009) Science 324:71–74

    Article  Google Scholar 

  18. Meng H, Larouche N, Lefèvre M, Jaouen F, Stansfield B, Dodelet JP (2010) Electrochim Acta 55:6450–6461

    Article  CAS  Google Scholar 

  19. Li XG, Popov BN, Kawahara T, Yanagi H (2011) J Power Sources 196:1717–1722

    Article  CAS  Google Scholar 

  20. Qiu YJ, Yu J, Shi TN, Zhou XS, Bai XD, Huang JY (2011) J Power Sources 196:9862–9867

    Article  CAS  Google Scholar 

  21. Shaikhutdinov SK, Avdeeva LB, Novgorodov BN, Zaikovskii VI, Kochubey DI (1997) Catal Lett 47:35–42

    Article  CAS  Google Scholar 

  22. Lin HY, Chu HK, Chuin-Tih Y (2007) J Am Chem Soc 129:9999–10010

    Article  Google Scholar 

  23. An W, Turner CH (2009) J Phys Chem C 113:7069–7078

    Article  CAS  Google Scholar 

  24. Zhou YK, Holme T, Berry J, Ohno TR, Ginley D, O’Hayre R (2010) J Phys Chem C 114:506–515

    Article  CAS  Google Scholar 

  25. Lin RJ, Li FY, Chen HL (2011) J Phys Chem C 115:521–528

    Article  CAS  Google Scholar 

  26. Maldonado S, Stevenson KJ (2004) J Phys Chem B 108:11375–11383

    Article  CAS  Google Scholar 

  27. Rümmeli MH, Kramberger C, Schäffel F, Borowiak-Palen E, Gemming T, Rellinghaus B, Jost O, Löffler M, Ayala P, Pichler T, Kalenczuk RJ (2007) phys stat sol (b) 244:3911–3915

  28. Gavillet J, Loiseau A, Journet C, Willaime F, Ducastelle F, Charlier JC (2001) Phys Rev Lett 87:275504-1-4

    Google Scholar 

  29. Bi H, Kou KC, Ostrikov K, Zhang JQ (2008) J Appl Phys 104:033510-1-6

    Google Scholar 

  30. Ning GQ, Liu Y, Wei F, Wen Q, Luo GH (2007) J Phys Chem C 111:1969–1975

    Article  CAS  Google Scholar 

  31. An H, Lee WJ, Jung JW (2011) Curr Appl Phys 11:S81–S85

    Article  Google Scholar 

  32. Maldonado S, Stevenson KJ (2005) J Phys Chem B 109:4707–4716

    Article  CAS  Google Scholar 

  33. Rao CV, Ishikawa Y (2012) J Phys Chem C 116:4340–4346

    Article  Google Scholar 

  34. Rao CV, Kumar LH, Viswanathan B (2011) Open J Phys Chem 1:11–22

    Article  CAS  Google Scholar 

  35. Chen ZW, Higgins D, Yu A, Zhang L, Zhang JJ (2011) Energy Environ Sci 4:3167–3192

    Article  CAS  Google Scholar 

  36. Zhang L, Lee KC, Bezerra CWB, Zhang JL, Zhang JJ (2009) Electrochim Acta 54:6631–6636

    Article  CAS  Google Scholar 

  37. Wang XQ, Lee JS, Zhu Q, Liu J, Wang Y, Dai S (2010) Chem Mater 22:2178–2180

    Article  CAS  Google Scholar 

  38. Liu G, Li XG, Ganesan P, Popov BN (2009) Appl Catal B Environ 93:156–165

    Article  CAS  Google Scholar 

  39. Sarapuu A, Nurmik M, Mändar H, Rosental A, Laaksonen T, Kontturi K, Schiffrin DJ, Tammeveski K (2008) J Electroanal Chem 612:78–86

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the NSFC (grant nos. 50972033, 50572019, and 51102064), the New Century Excellent Talents in University (NCET060343), the SRF for ROCS, SEM, S&T Program of Shenzhen government (JC200903120176A and JC201005260171A), and HIT.NSRIF.2010130.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Yu or Xuedong Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Y., Yu, J., Wu, W. et al. Fe–N/C nanofiber electrocatalysts with improved activity and stability for oxygen reduction in alkaline and acid solutions. J Solid State Electrochem 17, 565–573 (2013). https://doi.org/10.1007/s10008-012-1888-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1888-z

Keywords

Navigation