Skip to main content
Log in

Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes: the example of hematite

  • Feature Article
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Light-driven water-splitting (photoelectrolysis) at semiconductor electrodes continues to excite interest as a potential route to produce hydrogen as a sustainable fuel, but surprisingly little is known about the kinetics and mechanisms of the reactions involved. Here, some basic principles of semiconductor photoelectrochemistry are reviewed with particular emphasis on the effects of slow interfacial electron transfer at n-type semiconductors in the case of light-driven oxygen evolution. A simple kinetic model is outlined that considers the competition between interfacial transfer of photogenerated holes and surface recombination. The model shows that, if interfacial charge transfer is very slow, the build-up of holes at the surface will lead to substantial changes in the potential drop across the Helmholtz layer, leading to non-ideal behavior (Fermi level pinning). The kinetic model is also used to predict the response of photoanodes to chopped illumination and to periodic perturbations of illumination and potential. Recent experimental results obtained for α-Fe2O3 (hematite) photoanodes are reviewed and interpreted within the framework of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Nozik AJ (1977) Bull Am Phys Soc 22:95–95

    Google Scholar 

  3. Grätzel M, Augustyski J (2005) US Patent 6936143

  4. Bolton JR, Strickler SJ, Connolly JS (1985) Nature 316:495–500

    Article  CAS  Google Scholar 

  5. Nakamura R, Nakato Y (2004) J Am Chem Soc 126:1290–1298

    Article  CAS  Google Scholar 

  6. Nakamura R, Okamura T, Ohashi N, Imanishi A, Nakato Y (2005) J Am Chem Soc 127:12975–12983

    Article  CAS  Google Scholar 

  7. Kay A, Cesar I, Grätzel M (2006) J Am Chem Soc 128:15714–15721

    Article  CAS  Google Scholar 

  8. Barroso M, Cowan AJ, Pendlebury SR, Grätzel M, Klug DR, Durrant JR (2011) J Am Chem Soc 133:14868–14871

    Article  CAS  Google Scholar 

  9. Cowan AJ, Barnett CJ, Pendlebury SR, Barroso M, Sivula K, Grätzel M, Durrant JR, Klug DR (2011) J Am Chem Soc 133:10134–10140

    Article  CAS  Google Scholar 

  10. Dotan H, Sivula K, Grätzel M, Rothschild A, Warren SC (2011) Energy and Environ Sci 4:958–964

    Article  CAS  Google Scholar 

  11. Sivula K, Le Formal F, Grätzel M (2011) Chem Sus Chem 4:432–449

    CAS  Google Scholar 

  12. Wijayantha KGU, Saremi-Yarahmadi S, Peter LM (2011) PCCP 13:5264–5270

    Article  CAS  Google Scholar 

  13. Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW (2012) Energy and Environ Sci 5:7626–7636

    Article  CAS  Google Scholar 

  14. Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J (2012) J Am Chem Soc 134:4294–4302

    Article  CAS  Google Scholar 

  15. Peter LM, Ponomarev EA, Fermin DJ (1997) J Electroanal Chem 427:79–96

    Article  CAS  Google Scholar 

  16. Gärtner WW (1959) Phys Rev 116:84

    Article  Google Scholar 

  17. Wilson RH (1977) J Appl Phys 48:4292–4297

    Article  CAS  Google Scholar 

  18. Butler MA, Ginley DS (1980) J Mat Sci 15:1–19

    Article  CAS  Google Scholar 

  19. Reichman J (1980) Appl Phys Lett 36:574–577

    Article  CAS  Google Scholar 

  20. El Guibaly F, Colbow K (1983) J Appl Phys 54:6488–6491

    Article  Google Scholar 

  21. Li J, Peat R, Peter LM (1984) J Electroanal Chem 165:41–59

    Article  CAS  Google Scholar 

  22. Peter LM, Wijayantha KGU, Tahir AA (2012) Faraday discuss 155

  23. Cass MJ, Duffy NW, Peter LM, Pennock SR, Ushiroda S, Walker AB (2003) J Phys Chem B 107:5857–5863

    Article  CAS  Google Scholar 

  24. Cummings CY, Marken F, Peter LM, Tahir AA, Wijayantha KGU (2012) Chem Commun 48:2027–2029

    Article  CAS  Google Scholar 

  25. Cummings CY, Marken F, Peter LM, Wijayantha KGU, Tahir AA (2012) J Am Chem Soc 134:1228–1234

    Article  CAS  Google Scholar 

  26. Peter LM, Vanmaekelbergh D (1999) Time and frequency resolved studies of photoelectrochemical kinetics. Adv Electrochem Sci Eng 6:77–163, Weinheim

    Article  CAS  Google Scholar 

  27. Peter LM, Li J, Peat R (1984) J Electroanal Chem 165:29–40

    Article  CAS  Google Scholar 

  28. Li J, Peter LM (1985) J Electroanal Chem 193:27–47

    Article  CAS  Google Scholar 

  29. Peter LM, Li J, Peat R, Lewerenz HJ, Stumper J (1990) Electrochim Acta 35:1657–1664

    Article  CAS  Google Scholar 

  30. Ponomarev EA, Peter LM (1995) J Electroanal Chem 397:45–52

    Article  Google Scholar 

  31. Peat R, Peter LM (1987) Ber Bunsen-Ges Phys Chem 91:381–386

    CAS  Google Scholar 

  32. Leng WH, Zhang Z, Zhang JQ, Cao CN (2005) J Phys Chem B 109:15008–15023

    Article  CAS  Google Scholar 

  33. Schefold J (1992) J Electroanal Chem 341:111–136

    Article  CAS  Google Scholar 

  34. Schefold J (1995) J Electroanal Chem 394:35–48

    Article  Google Scholar 

  35. Bertoluzzi L, Bisquert J (2012) J Phys. Chem Lett 3:2517

    CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Upul Wijayantha and members of his research group for their collaborative work on hematite electrodes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence M. Peter.

Additional information

Dedicated to Professor Alexander Milchev on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peter, L.M. Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes: the example of hematite. J Solid State Electrochem 17, 315–326 (2013). https://doi.org/10.1007/s10008-012-1957-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1957-3

Keywords

Navigation