Skip to main content

Advertisement

Log in

Electrodeposition of manganese dioxide: effect of quaternary amines

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

An Erratum to this article was published on 14 April 2013

Abstract

The effect of quaternary ammonium salts (tetraethyl ammonium bromide, tetrapropyl ammonium bromide, and tetrabutyl ammonium bromide) on the structural, morphological, and electrochemical characteristics of electrolytic manganese dioxide (EMD) obtained from acidic aqueous sulfate solution has been investigated. Physical characterization of the EMD was achieved by X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, differential thermal analysis, and Fourier transform infrared spectroscopy. The charge–discharge profile of the materials was determined to evaluate their potential for alkaline battery applications. The presence of these quaternary ammonium salts as organic additives in the solution increased the current efficiency while decreasing energy consumption during electrochemical deposition of manganese dioxide (MnO2). All the additives influenced the discharge characteristics of the EMD samples significantly, producing a cathode material with increased cumulative discharge capacity relative to EMD prepared in the absence of additives. This is attributed to the ability of the additives to affect the particle size and morphology, and therefore electrochemical activity, of electrodeposited materials; the effects in the case of the additives investigated in this work were positive, producing a material with potential application to battery technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yao YF, Gupta N, Wroblowa HS (1987) J Electroanal Chem Interfacial Electrochem 223:107–117

    Article  CAS  Google Scholar 

  2. Dell RM (2000) Solid State Ionics 134:139–158

    Article  CAS  Google Scholar 

  3. Adelkhani H, Ghaemi M (2008) Solid State Ionics 179:2278–2283

    Article  CAS  Google Scholar 

  4. Tu J, Zhao XB, Xie J, Cao GS, Zhuang DG, Zhu TJ, Tu JP (2007) J Alloy Compd 432:313–317

    Article  CAS  Google Scholar 

  5. Urfer A, Lawrance GA, Swinkels DAJ (1997) J Appl Electrochem 27:667–672

    Article  CAS  Google Scholar 

  6. Kordesch KV, Dekker M (1974) Batteries. Dekker, New York

    Google Scholar 

  7. Kordesch KV, Welssenbacher M (1994) J Power Sources 51:61–78

    Article  CAS  Google Scholar 

  8. Machefaux E, Hill LI, Guyomard D. The Electrochemical Society, 204th Meeting, Abstract 365

  9. Jantscher W, Binder L, Fiedler DA, Andreaus R, Kordesch K (1999) J Power Sources 79:9–18

    Article  CAS  Google Scholar 

  10. Chou S, Cheng F, Chen J (2006) J Power Sources 162:727–734

    Article  CAS  Google Scholar 

  11. Nartey VK, Binder L, Huber A (2000) J Power Sources 87:205–211

    Article  CAS  Google Scholar 

  12. Fletcher S, Galea J, Hamilton JA, Tran T, Woods R (1986) J Electrochem Soc 133:1277–1281

    Article  CAS  Google Scholar 

  13. Li Y, Xie HQ, Wang JF, Chen LF (2011) Mater Lett C5:403

    Article  Google Scholar 

  14. Jiang RR, Huang T, Liun JL, Zhuang JH, Yu AS (2009) Electrochim Acta 54:3047–3052

    Article  CAS  Google Scholar 

  15. Zhang H, Wang Y, Liu C, Jiangm H (2012) J Alloy Compd 517:1–8

    Article  CAS  Google Scholar 

  16. Zhao T, Jiang H, Ma J (2011) J Power Sources 196:860–864

    Article  CAS  Google Scholar 

  17. Ghaemi M, Fard LK, Neshati J (2005) J Power Sources 141:340–350

    Article  CAS  Google Scholar 

  18. Ghavami RK, Rafiei Z, Tabatabai SM (2007) J Power Sources 164:934–946

    Article  CAS  Google Scholar 

  19. Nijjer S, Thonstad J, Haarberg GM (2000) Electrochim Acta 46:395–399

    Article  CAS  Google Scholar 

  20. Kao WH, Weibel VJ (1992) J Appl Electrochem 22:21–27

    Article  CAS  Google Scholar 

  21. Prelot B, Poinsignon C, Thomas F, Schouller E, Villieras F (2003) J Colloid Interface Sci 257:77–84

    Article  CAS  Google Scholar 

  22. Prelot B, Villieras F, Pelletier M, Razafitianamaharavo A, Thomas F, Poinsignon C (2003) J Colloid Interface Sci 264:343–353

    Article  CAS  Google Scholar 

  23. Boto K (1975) Electrodeposition Surf Treat 3:77–95

    Article  CAS  Google Scholar 

  24. Kozarac Z, Nikolic S, Ruzic I, Cosovic B (1982) J Electroanal Chem 137:279–292

    Article  CAS  Google Scholar 

  25. Felhosi I, Telegdi J, Palinkas G, Kalman E (2002) Electrochim Acta 47:2335–2340

    Article  CAS  Google Scholar 

  26. Wen DS, Wang BX (2002) Int J Heat Mass Transfer 45:1739–1747

    Article  CAS  Google Scholar 

  27. Mobarak AA, Hassan MSM, Sedahmed GH (2000) J Appl Electrochem 30:1269–1276

    Article  CAS  Google Scholar 

  28. Rusling JF, Wang Z, Owlia A (1990) Colloid Surf 48:173–184

    Article  CAS  Google Scholar 

  29. Bodoardo S, Penazzi N, Spinelli P, Arrabito M (2001) J Power Sources 94:194–200

    Article  CAS  Google Scholar 

  30. Thackeray MM (1997) Prog Solid State Chem 25:1–71

    Article  CAS  Google Scholar 

  31. Kurimoto H, Suzuoka K, Murakami T, Xia Y, Nakamura H, Yoshio M (1995) J Electrochem Soc 142:2156–2162

    Article  CAS  Google Scholar 

  32. Fernandes JB, Desai BD, Dalal VNK (1983) Electrochim Acta 28:309–315

    Article  CAS  Google Scholar 

  33. Ananth MV, Pethkar S, Dakshinamuthi K (1998) J Power Sources 75:278–282

    Article  CAS  Google Scholar 

  34. Ruetschi P (1984) J Electrochem Soc 131:2737–2744

    Article  CAS  Google Scholar 

  35. Abbas H, Nasser SA (1996) J Power Sources 58:15–21

    Article  CAS  Google Scholar 

  36. Fitzpatrick J, Maclean LAH, Swinkels DAJ, Tye FL (1997) J Applied Electrochem 27:243–253

    Article  CAS  Google Scholar 

  37. Besenhard JO, Gurtler J, Komenda P, Paxions A (1987) J Power Sources 20:253–258

    Article  CAS  Google Scholar 

  38. Khimyak YZ, Klinowski J (2000) J Mater Chem 10:1847–1855

    Article  CAS  Google Scholar 

  39. Brenet JP, Faber P (1995) Symp I.S.E. Batteries, Marcoussis, France

  40. Sharp JH, Tinsley DM (1971) J Therm Anal 3:43–48

    Article  Google Scholar 

  41. Ghaemi M, Biglari Z, Binder L (2001) J Power Sources 102:29–34

    Article  CAS  Google Scholar 

  42. Minakshi M (2008) J Electroanal Chem 616:99–106

    Article  CAS  Google Scholar 

  43. Minakshi M, Singh P, Carter M, Prince K (2008) Electrochem Solid State Lett 11:A145

    Article  CAS  Google Scholar 

  44. Kordesch K, Gsellmann J, Peri M, Tomantschger K, Chemelli R (1981) Electrochim Acta 26:1495–1504

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author (M. M.) wishes to acknowledge the Australian Research Council (ARC). A part of this work was supported under Australian Research Council (ARC) Discovery Project funding scheme (DP1092543).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Minakshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswal, A., Tripathy, B.C., Subbaiah, T. et al. Electrodeposition of manganese dioxide: effect of quaternary amines. J Solid State Electrochem 17, 1349–1356 (2013). https://doi.org/10.1007/s10008-013-2002-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2002-x

Keywords

Navigation