Skip to main content
Log in

Fabrication of AAO films with controllable nanopore size by changing electrolytes and electrolytic parameters

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, we fabricate two kinds of anodic aluminum oxide (AAO) films with controllable nanopore size by changing electrolytes and electrolytic parameters. The first AAO film with a four-layer structure was fabricated by sequential anodization of aluminum in aqueous solution of H2SO4, H2C2O4, malonic acid, and tartaric acid at different anodic oxidation voltages. The average pore diameter of the as-prepared AAO film is 25 nm in the first layer, 54 nm in the second layer, 68 nm in the third layer, and 88 nm in the fourth layer, respectively. The pore densities of each layer decrease downwards to Al substrate, which are 300 × 108, 100 × 108, 21 × 108, and 6.9 × 108 cm−2, respectively. Furthermore, another AAO film with periodically changed pore diameter was fabricated by alternating anodization of aluminum in aqueous solution of H3PO4 and tartaric acid under galvanostatic mode. The anodization processes present approximately identical best ordering voltage (195 V) in H3PO4 and tartaric acid under galvanostatic mode. The pore diameter with periodic change can be enlarged through a pore-widening treatment. Both AAO films with special nanopore structures can be used not only as templates for preparing nano-array materials whose pore diameter presents periodic change or gradual increase, but also as nanofilters to separate materials in some special media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Seung YY, Incheol R, Hwang YK, Jin KK, Sung KJ, Thomas PR (2006) Adv Mater 18:709–712

    Article  Google Scholar 

  2. Ho AYY, Gao H, Lam YC, Rodriguez I (2008) Adv Funct Mater 18:2057–2063

    Article  CAS  Google Scholar 

  3. Tian YT, Meng GW, Biswas SK, Ajayan PM, Sun SH, Zhang L (2004) Appl Phys Lett 85:967–969

    Article  CAS  Google Scholar 

  4. Singh R, Kumar R, Chakarvarti SK (2008) Mater Lett 62:874–877

    Article  CAS  Google Scholar 

  5. Meng GW, Jung YJ, Cao AY, Vajtai R, Ajayan PM (2005) PNAS 102:7074–7078

    Article  CAS  Google Scholar 

  6. Yuan ZH, Huang H, Liu L, Fan S (2001) Chem Phys Lett 345:39–43

    Article  CAS  Google Scholar 

  7. Zhang L, Cheng B, Shi WS, Samulski ET (2005) J Mater Chem 15:4889–4893

    Article  CAS  Google Scholar 

  8. Nagaura T, Takeuchib F, Inoue S (2008) Electrochim Acta 53:2109–2114

    Article  CAS  Google Scholar 

  9. Im WS, Cho YS, Choi GS, Yu FC, Kim DJ (2004) Diamond Relat Mater 13:1214–1217

    Article  CAS  Google Scholar 

  10. Krishnan R, Thompson CV (2007) Adv Mater 19:988–992

    Article  CAS  Google Scholar 

  11. Lee W, Ji R, Gösele U, Nielsch K (2006) Nat Mater 5:741–747

    Article  CAS  Google Scholar 

  12. Lee W, Schwirn K, Steinhart M, Pipple E, Scholz R, Gösele U (2008) Nat Nanotechnol 3:234–239

    Article  CAS  Google Scholar 

  13. Lee W, Kim J-C, Gösele U (2010) Adv Funct Mater 20:21–27

    Article  CAS  Google Scholar 

  14. Losic D, Lillo M, Losic D Jr (2009) Small 5:1392–1397

    Article  CAS  Google Scholar 

  15. Losic D, Losic D Jr (2009) Langmuir 25:5426–5431

    Article  CAS  Google Scholar 

  16. Chen SS, Ling ZY, Hu X, Yang H, Li Y (2010) J Mater Chem 20:1794–1798

    Article  CAS  Google Scholar 

  17. Chu SZ, Wada K, Inoue S, Isogai M, Katsuta Y, Yasumori A (2006) J Electrochem Soc 153:B384–B391

    Article  CAS  Google Scholar 

  18. Ono S, Saito M, Asoh H (2005) Electrochim Acta 51:827–833

    Article  CAS  Google Scholar 

  19. Mitchell DT, Lee SB, Trofin L, Li N, Nevanen TK, Soderlund H, Martin Charles R (2002) J Am Chem Soc 124:11864–11865

    Article  CAS  Google Scholar 

  20. Lee W, Kim JC (2010) Nanotechnology 21:485304–485311

    Article  Google Scholar 

  21. Belwalkara A, Grasinga E, Geertruydenb WV, Huangc Z, Misioleka WZ (2008) J Membr Sci 319:192–198

    Article  Google Scholar 

  22. Santos A, Montero-Moreno JM, Bachmann J, Nielsch K, Formentín P, Ferré-Borrull J, Pallarès J, Marsal LF (2011) Appl Mater Interfaces 3:1925–1932

    Article  CAS  Google Scholar 

  23. Patermarakis G, Moussoutzanis K (2009) Electrochim Acta 54:2434–2443

    Article  CAS  Google Scholar 

  24. Patermarakis G, Karayianni H, Masavetas K, Chandrinos J (2009) J Solid State Electrochem 13:1831–1847

    Article  CAS  Google Scholar 

  25. Li AP, Müller F, Birner A, Nielsch K, Gösele U (1998) J Appl Phys 84:6023–6026

    Article  CAS  Google Scholar 

  26. Masuda H, Hasegwa F, Ono S (1997) J Electrochem Soc 144:L127–L130

    Article  CAS  Google Scholar 

  27. Masuda H, Fukuda K (1995) Science 268:1466–1468

    Article  CAS  Google Scholar 

  28. Lee W, Nielsch K, Gösele U (2007) Nanotechnology 18:475713–475720

    Article  Google Scholar 

  29. Ono S, Saito M, Ishiguro M, Asoh H (2004) J Electrochem Soc 151:B473–B478

    Article  CAS  Google Scholar 

  30. Jessensky O, Muller F, Gösele U (1998) Appl Phys Lett 72:1173–1175

    Article  CAS  Google Scholar 

  31. Li FY, Zhang L, Metzger RM (1998) Chem Mater 10:2470–2480

    Article  CAS  Google Scholar 

  32. Patermarakis G (2009) J Electroanal Chem 635:39–50

    Article  CAS  Google Scholar 

  33. Patermarakis G, Moussoutzanis K (2011) J Electroanal Chem 659:176–190

    Article  CAS  Google Scholar 

  34. Patermarakis G, Diakonikolaou J (2012) J Solid State Electrochem 16:2921–2939

    Article  CAS  Google Scholar 

  35. Nielsch K, Choi J, Schwirn K, Wehrspohn RB, Gösele U (2002) Nano Lett 2:677–680

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51071067 and J1210040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafei Kuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Tang, S., Zhou, H. et al. Fabrication of AAO films with controllable nanopore size by changing electrolytes and electrolytic parameters. J Solid State Electrochem 17, 1931–1938 (2013). https://doi.org/10.1007/s10008-013-2034-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2034-2

Keywords

Navigation