Skip to main content
Log in

Crystal structure and high-temperature electrical conductivity of novel perovskite-related gallium and indium oxides

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Novel complex oxides Sr2Ga1+x In1−x O5, x = 0.0–0.2 with brownmillerite-type structure were prepared in air at T = 1,273 K, 24 h. Study of the crystal structure of Sr2Ga1.1In0.9O5 refined using X-ray powder diffraction data (S.G. Icmm, a = 5.9694(1) Å, b = 15.2091(3) Å, c = 5.7122(1) Å, χ 2 = 2.48, R F 2= 0.0504, R p = 0.0458) revealed ordering of Ga3+ and In3+ cations over tetrahedral and octahedral positions, respectively. A partial replacement of Sr2+ by La3+ according to formula Sr1−y La y Ga0.5In0.5O2.5+y/2, leads to the formation of a cubic perovskite (a = 4.0291(5) Å) for y = 0.3. No ordering of oxygen vacancies or cations was observed in Sr0.7La0.3Ga0.5In0.5O2.65 as revealed by electron diffraction study. The trace diffusion coefficient (D T) of oxygen for cubic perovskite Sr0.7La0.3Ga0.5In0.5O2.65 is in the range 2.0 × 10−9–6.3 × 10−8 cm2/s with activation energy 1.4(1) eV as determined by isotopic exchange depth profile technique using secondary ion mass spectrometry at 973–1,223 K. These values are close to those reported for Ca-doped ZrO2. High-temperature electrical conductivity of Sr0.7La0.3Ga0.5In0.5O2.65 studied by AC impedance was found to be nearly independent on oxygen partial pressure. Calculated values of activation energy at T < 1,073 K for hole and oxide-ion conductivities are 0.96 and 1.10 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Steele BCH (2001) J Mater Sci 36:1053–1068

    Article  CAS  Google Scholar 

  2. Huang K, Tichy RS, Goodenough JB (1998) J Am Ceram Soc 81:2565–2575

    Article  CAS  Google Scholar 

  3. Goodenough J, Ruez-Diaz J, Zhen Y (1990) Solid State Ionics 44:21–31

    Article  CAS  Google Scholar 

  4. Kakinuma K, Yamamura H, Haneda H, Atake T (2002) Solid State Ionics 154–155:571–576

    Article  Google Scholar 

  5. Kakinuma K, Arisaka T, Yamamura H, Atake T (2004) Solid State Ionics 175:139–143

    Article  CAS  Google Scholar 

  6. Yao T, Uchimoto Y, Kinuhata M, Inagaki T, Yoshida H (2000) Solid State Ionics 132:189–198

    Article  CAS  Google Scholar 

  7. Hashimoto T, Yoshinaga M, Nakano K, Omoto K, Sugimoto T, Tanaka M, Yashima MJ (2009) Ceram Soc Jpn 117:56–59

    Article  CAS  Google Scholar 

  8. von Schenk R, Mueller-Buschbaum H (1973) Z Anorg Allg Chem 395:280–286

    Article  Google Scholar 

  9. Chernov SV, Dobrovolsky YA, Istomin SY, Antipov EV, Grins J, Svensson G, Tarakina NV, Abakumov AM, Van Tendeloo G, Erikson SG, Rahman SMH (2012) Inorg Chem 51:1094–1103

    Article  CAS  Google Scholar 

  10. Shannon RD (1976) Acta Crystallogr A32:751–767

    Article  CAS  Google Scholar 

  11. Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory Report LA-UR-86-748; Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210–213

    Google Scholar 

  12. Ullmann H, Trofimenko N, Tietz F, Stoever D, Ahmad-Khanlou A (2000) Solid State Ionics 138:79–90

    Article  CAS  Google Scholar 

  13. Boehm E, Bassat J-M, Steil MC, Dordor P, Mauvy F, Grenier J-C (2003) Solid State Sci 5:973–981

    Article  CAS  Google Scholar 

  14. Kilner A, De Souza RA, Fullarton IC (1996) Solid State Ionics 86–88:703–709

    Article  Google Scholar 

  15. Song S-J, Wachsman ED, Doris SE, Balachandran UJ (2003) Electrochem Soc 150:A790–A795

    Article  CAS  Google Scholar 

  16. Minh NQ, Takashi T (1995) Science and technology of ceramic fuel cells. Elsevier, Amsterdam

    Google Scholar 

  17. Raj ES, Atkinson A, Kilner JA (2009) Solid State Ionics 180:952–955

    Article  CAS  Google Scholar 

  18. Berastegui P, Hull S, Garcia-Garcia FJ, Erikson S-GJ (2002) Solid State Chem 164:119–130

    Article  CAS  Google Scholar 

  19. Simpson LA, Carter REJ (1966) Am Ceram Soc 49:139–144

    Article  CAS  Google Scholar 

  20. Manning PS, Sirman JD, Kilner JA (1997) Solid State Ionics 93:125–132

    Article  Google Scholar 

  21. Ishihara T, Kilner JA, Honda M, Sakai N, Yokokawa H, Takita Y (1998) Solid State Ionics 113–115:593–600

    Article  Google Scholar 

  22. Mohn CE, Allan NL, Stølen S (2006) Solid State Ionics 177:223–228

    Article  CAS  Google Scholar 

  23. Abakumov AM, Rossell MD, Gutnikova OY, Drozhzhin OA, Leonova LS, Dobrovolsky YA, Istomin SY, Van Tendeloo G, Antipov EV (2008) Chem Mater 20:4457–4467

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Ministry of Science and Education of Russian Federation (state contract 14.740.12.1358), Russian Foundation for Basic Research (grant no. 11-08-01159a and 11-03-01225), and MSU-development Program up to 2020. This work is financially supported by the Swedish Research Council (VR) and the Baltic Sea/Visby program from the Swedish Institute. The electron microscopy facility was supported by Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ya. Istomin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Istomin, S.Y., Antipov, E.V., Fedotov, Y.S. et al. Crystal structure and high-temperature electrical conductivity of novel perovskite-related gallium and indium oxides. J Solid State Electrochem 18, 1415–1423 (2014). https://doi.org/10.1007/s10008-013-2190-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2190-4

Keywords

Navigation