Skip to main content

Advertisement

Log in

Dielectric relaxation and AC conductivity of modified polysulfones with chelating groups

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The frequency-dependent dielectric properties and conductivity of partially quaternized polysulfones, quaternized polysulfones containing chelating groups, and chelated quaternized polysulfones with Cu2+ have been studied. The permittivity has low values and is dependent on the chemical characteristic of samples, in relation with the charge transfer complex and free volume and, consequently, with packing of the polymer chains and of the polarizable groups per volume units. At temperatures below 150 °C, all polysulfone films develop two relaxation processes, i.e., γ and β relaxation, involving different enthalpy and entropy contributions induced by their chemical structures. Frequency–temperature-dependent conductivity showed that conductivity increased with frequency, while the values of thermal activation energy of electrical conduction, lower that 1, suggest that a model based on energy bandgap representation could be suitable for explaining the temperature influence on AC conductivity for all samples. In addition, enhancement of mobility of the charge carrier upon complexation was observed for chelated quaternized polysulfones with Cu2+. All these typical semiconducting properties recommend the studied polymers as potential candidates for use in various applications in electrotechnical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cha DI, Kim KW, Chu GH, Kim HY, Lee KH, Bhattarai N (2006) Macromol Res 14:331–337

    Article  CAS  Google Scholar 

  2. Saxena P, Gaur MS, Shukla P, Khare PK (2008) J Electrostat 66:584–588

    Article  CAS  Google Scholar 

  3. Filimon A, Albu RM, Avram E, Ioan S (2010) J Macromol Sci Part B Phys 49:207–217

    Article  CAS  Google Scholar 

  4. Ioan S, Filimon A, Avram E (2006) Polym Eng Sci 46:827–836

    Article  CAS  Google Scholar 

  5. Filimon A, Albu RM, Avram E, Ioan S (2013) J Macromol Sci Part B Phys 52:1–16

    Article  Google Scholar 

  6. Guan R, Zou H, Lu D, Gong C, Liu Y (2005) Eur Polym J 41:1554–1560

    Article  CAS  Google Scholar 

  7. Idrisa A, Zaina NM, Noordinb MY (2007) Desalination 207:324–339

    Article  Google Scholar 

  8. Kochkodan V, Tsarenko S, Potapchenko N, Kosinova V, Goncharuk V (2008) Desalination 220:380–385

    Article  CAS  Google Scholar 

  9. Yu H, Huang Y, Ying H, Xiao C (2007) Carbohyd Polym 69:29–40

    Article  CAS  Google Scholar 

  10. Filimon A, Avram E, Dunca S, Stoica I, Ioan S (2009) J Appl Polym Sci 112:1808–1816

    Article  CAS  Google Scholar 

  11. Ioan S, Filimon A, Avram E (2006) J Appl Polym Sci 101:524–531

    Article  CAS  Google Scholar 

  12. Filimon A, Avram E, Ioan S (2007) J Macromol Sci Part B Phys 46:503–520

    Article  CAS  Google Scholar 

  13. Guiver MD, Black P, Tam CM, Deslandes Y (1993) J Appl Polym Sci 48:1597–1606

    Article  CAS  Google Scholar 

  14. Albu RM, Avram E, Musteata VE, Homocianu M, Ioan S (2011) High Perform Polym 23:85–96

    CAS  Google Scholar 

  15. Albu RM, Avram E, Stoica I, Ioan S (2012) Polym Compos 33:573–581

    Article  CAS  Google Scholar 

  16. Esmaeili M, Madaeni SS, Barzin J (2010) Polym Int 59:1006–1013

    Article  CAS  Google Scholar 

  17. Li W, Zhao H, Teasdale PR, John R, Zhang S (2002) React Funct Polym 52:31–41

    Article  CAS  Google Scholar 

  18. del Pizarro GC, Marambio OG, Jeria-Orell M, Huerta MR (2007) Polym Int 56:93–103

    Article  CAS  Google Scholar 

  19. Warshawsky A, Kahana N, Deshe A, Gottlieb HE, Arad-Yellin R (1990) J Polym Sci, Part A: Polym Chem 28:2885–2905

    Article  CAS  Google Scholar 

  20. Avram E (2001) Polym Plast Technol Eng 40:275–281

    Article  CAS  Google Scholar 

  21. Filimon A, Avram E, Ioan S (2013) Polym Bull 70:1835–1851

    Article  CAS  Google Scholar 

  22. Kabay N, Egawa H (1993) Sep Sci Technol 28:1985–1994

    Article  CAS  Google Scholar 

  23. Shchedrin Yu S, Golounin AV (2002) Russ J Gen Chem 72:912–914

    Article  Google Scholar 

  24. Kesavulu K, Ravi Sankar T, Venkata Ramana P (2013) Chem Sci Trans 2:1318–1325

    Google Scholar 

  25. Nada AMA, Dawy M, Salama AH (2004) Mat Chem Phys 84:205–215

    Article  CAS  Google Scholar 

  26. Kao KC (2004) Dielectric phenomena in solid. Elsevier, San Diego, p 75

    Google Scholar 

  27. Pradhan KD, Choudhary RNP, Samantaray BK (2008) Int J Electrochem Sci 3:597–608

    CAS  Google Scholar 

  28. Monetes H, Mazeanu K, Cavaille JY (1997) Macromolecules 30:6977–6984

    Article  Google Scholar 

  29. Ioan S, Hulubei C, Popovici D, Musteata VE (2013) Polym Eng Sci 53:1430–1447

    Article  CAS  Google Scholar 

  30. Bas C, Tamagna C, Pascal T, Alberola D (2003) Polym Eng Sci 43:344–355

    Article  CAS  Google Scholar 

  31. Fried JR, Letton A, Welsh WJ (1990) Polymer 31:1032–1037

    Article  CAS  Google Scholar 

  32. Havriliak S, Havriliak SJ (1997) Dielectric and mechanical relaxation in materials. Hanser, Cincinnati

    Google Scholar 

  33. Comer AC, Kalika DS, Rowe BW, Freeman BD, Paul DR (2009) Polymer 50:891–897

    Article  CAS  Google Scholar 

  34. Georgoussisa G, Kanapitsasa A, Pissis P, Savelyevb YV, Veselovb VYA, Privalkob EG (2000) Eur Polym J 36:1113–1126

    Article  Google Scholar 

  35. Tsuwi J, Pospiech D, Jehnichen D, Häuβler L, Kremer F (2007) J Appl Polym Sci 105:201–207

    Article  CAS  Google Scholar 

  36. Starkweather HW (1991) Polymer 32:2443–2448

    Article  CAS  Google Scholar 

  37. Pradhan DK, Choudhary RNP, Samantaray BK (2008) Express Polym Lett 2:630–638

    Article  CAS  Google Scholar 

  38. Khazaka R, Locatelli ML, Diaham S, Bidan P, Dupuy L, Grosset G (2013) J Phys D Appl Phys 46–065501:1–7

    Google Scholar 

  39. Aziz SB, Abidin ZHZ, Arof AK (2010) Express Polym Lett 4:300–310

    Article  CAS  Google Scholar 

  40. Yakuphanoglu F, Aydogdu Y, Schatzschneider U, Rentschler E (2003) Solid State Commun 128:63–67

    Article  CAS  Google Scholar 

  41. Kuczkowski A, Zielinski R (1982) J Phys D Appl Phys 15:1765–1768

    Article  CAS  Google Scholar 

  42. Clarke PJ, Ray AK, Tsibouklis J, Werninck AR (1991) J Mater Sci-Mater Electron 2:18–20

    Article  CAS  Google Scholar 

  43. Muruganand S, Narayandass SK, Mangalaraj D, Vijayan TM (2001) Polym Int 50:1089–1094

    Article  CAS  Google Scholar 

  44. Banik I (2009) Chalcogenide Letters 6:629–633

    CAS  Google Scholar 

  45. Smith R (1980) Semiconductors. Cambridge University Press, London

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project no. PN-II-RU-TE-2012-3-0143, 2013 stage.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Ioan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albu, R.M., Avram, E., Musteata, V.E. et al. Dielectric relaxation and AC conductivity of modified polysulfones with chelating groups. J Solid State Electrochem 18, 785–794 (2014). https://doi.org/10.1007/s10008-013-2323-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2323-9

Keywords

Navigation