Skip to main content
Log in

Passivity of titanium, part 1: film growth model diagnostics

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Diagnostic criteria for the growth of the anodic oxide film on titanium in H2SO4 are reported. The criteria apply to the generalized high field model, which postulates that the electric field within the film is dependent upon the film thickness, and the point defect model, which describes the electric field as being constant during film growth. The diagnostic criteria show that the PDM more realistically models film growth than does the HFM, and we conclude that in this system the electric field strength is invariant with applied voltage and film thickness. The constancy of the electric field in the passive film on titanium, as demonstrated in this work, is attributed to band-to-band Esaki tunneling, which buffers the electric field against changes in the applied voltage and film thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang L (1995) Kinetics of passive film growth and the segregation of alloying elements in passive systems. Ph.D. Dissertation, The Pennsylvania State University

  2. Zhang L, Macdonald DD, Sikora E, Sikora J (1998) J Electrochem Soc 145(3):898

    Article  CAS  Google Scholar 

  3. Günthershultze A, Betz H (1934) Z Phys 92:367

    Article  Google Scholar 

  4. Verwey EJW (1935) Physica 2:1059

    Article  CAS  Google Scholar 

  5. Mott NF (1947) Trans Faraday Soc 43:429

    Article  CAS  Google Scholar 

  6. Cabrera N, Mott NF (1948) Rep Prog Phys 12:163

    Article  Google Scholar 

  7. Young L (1961) Anodic Oxide Films. Academic, New York

    Google Scholar 

  8. Dignam MJ (1973) In: Diggle JW (ed) Oxides and oxide films, vol 1. Dekker, New York

    Google Scholar 

  9. Fromhold AT Jr (1976) In: Diggle JW, Vijh AK (eds) Oxides and oxide films, vol 3. Dekker, New York

    Google Scholar 

  10. Chao CY, Lin LF, Macdonald DD (1981) J Electrochem Soc 128(6):1187

    Article  CAS  Google Scholar 

  11. Lin LF, Chao CY, Macdonald DD (1981) J Electrochem Soc 128(6):1194

    Article  CAS  Google Scholar 

  12. Chao CY, Lin LF, Macdonald DD (1982) J Electrochem Soc 129(9):1874

    Article  CAS  Google Scholar 

  13. Zhu Y-C (1994) Ph.D. Dissertation. Osaka University, Osaka, Japan

    Google Scholar 

  14. Hurlen T, Wilhelmsen W (1986) Electrochim Acta 31(9):1139

    Article  CAS  Google Scholar 

  15. Bacarella AL, Gadiyar HS, Sutton AL (1981) J Electrochem Soc 128(7):1531

    Article  CAS  Google Scholar 

  16. Whillock GOH, Burstein GT (1989) J Electrochem Soc 136(5):1320

    Article  CAS  Google Scholar 

  17. Alkire R, Cangellari A (1989) J Electrochem Soc 136(4):913

    Article  CAS  Google Scholar 

  18. Ellerbrock D (1998) Defect characterization of titanium passive films. Ph.D. Dissertation, Pennsylvania State University

  19. Roh B-W, Macdonald DD (2013) An EIS Study of the Passive State on Titanium. J Electrochem Soc, in preparation

  20. Macdonald DD (1992) The point defect model for the passive state. J Electrochem Soc 139(12):3434–3449

    Article  CAS  Google Scholar 

  21. Macdonald DD (1999) Passivity: the key to our metals-based civilization. Pure Appl Chem 71:951

    Article  CAS  Google Scholar 

  22. Ai J, Chen Y, Macdonald DD, Urquidi-Macdonald M (2006) Electrochemical impedance spectroscopic study of passive zirconium: part 1. High temperature, deaerated aqueous solutions. J Electrochem Soc 154(1):C43–C51

    Article  Google Scholar 

  23. Ai J, Chen Y, Macdonald DD, Urquidi-Macdonald M (2006) Electrochemical impedance spectroscopic study of passive zirconium: part 2. High temperature, hydrogenated aqueous solutions. J Electrochem Soc 154(1):C52–C59

    Article  Google Scholar 

  24. Sharifi-Asl S, Macdonald DD, Almarzooqi A, Kursten B, Engelhardt GR (2013) A comprehensive electrochemical impedance spectroscopic study of passive carbon steel in concrete pore water. J Electrochem Soc, in press

Download references

Acknowledgments

The authors gratefully acknowledge the support of this work by the US Department of Energy, Basic Energy Sciences, through Grant DEFG02-91ER45461.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Digby D. Macdonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellerbrock, D., Macdonald, D.D. Passivity of titanium, part 1: film growth model diagnostics. J Solid State Electrochem 18, 1485–1493 (2014). https://doi.org/10.1007/s10008-013-2334-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2334-6

Keywords

Navigation