Skip to main content
Log in

Copper hexacyanoferrate modified electrodes for hydrogen peroxide detection as studied by X-ray absorption spectroscopy

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

X-ray absorption spectroscopy (XAS) has been used to monitor the local geometry of Fe and Cu sites of copper hexacyanoferrates (CuHCF)-modified electrodes which find application in the electrochemical detection of hydrogen peroxide. The XAS approach has permitted to check the nature of the Cu and Fe sites and to investigate their local structure around about 500 pm from the metal centres. The measurements have been done on electrodes prior and after the addition of known quantities of hydrogen peroxide at two different concentration ranges, following a protocol consisting of H2O2 addition, applied potential, and rest period. For the CuHCF-modified electrode, this protocol leads to the increasing conversion to an already present “inactive” component, which limits the usability of the sensor; whereas the electrode modified with the Cu2+-loaded CuHCF displays a better resistance to this unavoidable process. In particular, the formation of the “inactive” component takes place more slowly, confirming the capability, at molecular scale, of such Cu-enriched CuHCF used as electrode modifier to detect more efficiently hydrogen peroxide, as recently demonstrated in our previous paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sharpe AG (1976) The chemistry of cyano complexes of the transition metals. Academic, London

    Google Scholar 

  2. Itaya K, Uchida I, Neff VD (1986) Acc Chem Res 19:162–168

    Article  CAS  Google Scholar 

  3. Kulesza PJ, Malik MA, Berrettoni M, Giorgetti M, Zamponi S, Schmidt R, Marassi R (1998) J Phys Chem B 102:1870–1876

    Article  CAS  Google Scholar 

  4. De Tacconi NR, Rajeshwar K, Lezna RO (2003) Chem Mater 15:3046–3062

    Article  Google Scholar 

  5. Berrettoni M, Giorgetti M, Zamponi S, Conti P, Ranganathan D, Zanotto A, Saladino L, Caponetti E (2010) J Phys Chem C 114:6401–6407

    Article  CAS  Google Scholar 

  6. Ranganathan D, Zamponi S, Berrettoni M, Layla Mehdi B, Cox JA (2010) Talanta 82:1149–1155

    Article  CAS  Google Scholar 

  7. Sato O, Iyoda T, Fujishima A, Hashimoto K (1996) Science 272:704–706

    Article  CAS  Google Scholar 

  8. Tokoro H, Ohkoshi SI (2011) Dalton Trans 40:6825–6824

    Article  CAS  Google Scholar 

  9. Giorgetti M, Scavetta E, Berrettoni M, Tonelli D (2001) Analyst (Cambridge, U K) 126:2168–2171

    Article  CAS  Google Scholar 

  10. Karyakin AA (2001) Electroanalysis 13:813–819

    Article  CAS  Google Scholar 

  11. Liu Y, Chu Z, Jin W (2009) Electrochem Commun 11:484–487

    Article  CAS  Google Scholar 

  12. Chen L, Wang X, Zhang X, Zhang H (2012) J Mater Chem 22:22090–22096

    Article  CAS  Google Scholar 

  13. Guadagnini L, Tonelli D, Giorgetti M (2010) Electrochim Acta 55:5036–5039

    Article  CAS  Google Scholar 

  14. Wang J, Cui L, Yin H, Dong J, Ai S (2012) J Solid State Electrochem 16:1545–1550

    Article  CAS  Google Scholar 

  15. Wu R, Chen X, Hu J (2012) J Solid State Electrochem 16:1975–1982

    Article  CAS  Google Scholar 

  16. Manivel A (2011) Anandan. J Solid State Electrochem 15:153–160

    Article  CAS  Google Scholar 

  17. Hillman AR, Skopek MA, Gurman SJ (2011) Phys Chem Chem Phys 13:5252–5263

    Article  CAS  Google Scholar 

  18. Hillman AR, Skopek MA, Gurman SJ (2010) J Solid State Electrochem 14:1997–2010

    Article  CAS  Google Scholar 

  19. Giorgetti M (2013) ISRN Mater Sci 2013:938625. doi:10.1155/2013/938625

    Article  Google Scholar 

  20. Giorgetti M, Guadagnini L, Tonelli D, Minicucci M, Aquilanti G (2012) Phys Chem Chem Phys 14:5527–5537

    Article  CAS  Google Scholar 

  21. Giorgetti M, Aquilanti A, Minicucci M (2013) J Phys Conf Ser 430:012049

    Article  Google Scholar 

  22. Guadagnini L, Giorgetti M, Tonelli D (2013) J Solid State Electrochem 17:2805–2814

    Article  CAS  Google Scholar 

  23. Di Cicco A, Aquilanti G, Minicucci M, Principi E, Novello N, Cognigni A, Olivi L (2009) J Phys Conf Ser 190:012043

    Article  Google Scholar 

  24. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541

    Article  CAS  Google Scholar 

  25. Filipponi A, DiCicco A, Natoli CR (1995) Phys Rev B 52:15122–15134

    Article  CAS  Google Scholar 

  26. Filipponi A, Di Cicco A (1995) Phys Rev B 52:15135–15149

    Article  CAS  Google Scholar 

  27. Giorgetti M, Berrettoni M, Filipponi A, Kulesza PJ, Marassi R (1997) Chem Phys Lett 275:108–112

    Article  CAS  Google Scholar 

  28. Giorgetti M, Berrettoni M (2008) Inorg Chem 47:6001–6008

    Article  CAS  Google Scholar 

  29. Hedin L, Lundqvist BI (1971) J Phys C Solid State Phys 4:2064–2083

    Article  Google Scholar 

  30. Krause MO, Oliver JH (1979) J Phys Chem Ref Data 8:329–338

    Article  CAS  Google Scholar 

  31. Shankaran DR, Narayanan SS (1999) Fres J Anal Chem 364:686–689

    Article  CAS  Google Scholar 

  32. Makowski O, Stroka J, Kulesza PJ, Malik MA, Galus Z (2002) J Electroanal Chem 532:157–164

    Article  CAS  Google Scholar 

  33. Schwudke D, Stößer R, Scholz F (2000) Electrochem Commun 2:301–306

    Article  CAS  Google Scholar 

  34. Frank P, Benfatto M, Hedman B, Hogdson KO (2012) Inorg Chem 51:2086–2096

    Article  CAS  Google Scholar 

  35. Filipponi A (1995) J Phys: Condens Matter 7:9343–9356

    CAS  Google Scholar 

  36. Giorgetti M, Berrettoni M, Smyrl WH (2007) Chem Mater 19:5991–6000

    Article  CAS  Google Scholar 

  37. Avila M, Reguera L, Rodriguez-Hernandez J, Balmaseda J, Reguera E (2008) J Solid State Chem 181:2899–2907

    Article  CAS  Google Scholar 

  38. Sharma MK, Aggarwal SK (2013) J Electroanal Chem 705:64–67

    Article  CAS  Google Scholar 

  39. Fazzini S, Nanni D, Ballarin B, Cassani MC, Giorgetti M, Maccato C, Trapananti A, Aquilanti G, Ibrahim Ahmed S (2012) J Phys Chem C 116:25434–25443

    Article  CAS  Google Scholar 

  40. Zhang D, Wang K, Sun DC, Xia XH, Chen HY (2003) Chem Mater 15:4163–4165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

XAS measurements at ELETTRA were supported by Sincrotrone Trieste S.C.p.A. (proposal no. 20095163, “X Ray Absorption Spectroscopy Structural studies of MHCFs-based mediators for H2O2 detection”). M.G. also acknowledges the University of Bologna for RFO funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Giorgetti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figs. S1–S5

(XANES, EXAFS, LCF analysis, and CV) (DOCX 653 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giorgetti, M., Tonelli, D., Berrettoni, M. et al. Copper hexacyanoferrate modified electrodes for hydrogen peroxide detection as studied by X-ray absorption spectroscopy. J Solid State Electrochem 18, 965–973 (2014). https://doi.org/10.1007/s10008-013-2343-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2343-5

Keywords

Navigation