Skip to main content
Log in

Novel hollow Sn–Cu composite nanoparticles anodes for Li-ion batteries prepared by galvanic replacement reaction

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured hollow Sn–Cu multi-phase composite nanoparticles anode that contains Sn and Cu6Sn5 was synthesized via galvanic replacement reaction using Sn nanoparticles as a sacrificial template. The sacrificial oxidation of Sn and simultaneous reduction of Cu on the surface because of the redox potential difference is proposed to account for the formation of hollow Sn–Cu nanostructures. The structural evolution of the Sn–Cu hollow nanoparticle, in the process of galvanic replacement and structure, composition changes during charge/discharge processes were studied based on scanning electron microscope, X-ray powder diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy investigations. The electrochemical properties of the samples were evaluated by galvanostatic discharge–charge cycling, cyclic voltammetry, and electrochemical impedance spectroscopy. Compared with solid Sn–Cu nanoparticles, hollow Sn–Cu nanoparticles showed better capacity retention. The improved electrochemical performance may be attributed to the stable hollow structure and the combination of Cu6Sn5. The facile solution-based process and excellent cycling stability show great potential of the multi-phase Sn–Cu hollow composite nanoparticles as an anode material for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Luo B, Wang B, Liang MH, Ning J, Li XL, Zhi LJ (2012) Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties. Adv Mater 24:1405–1409

    Article  CAS  Google Scholar 

  2. Winter M, Besenhard JO (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim Acta 45:31–50

    Article  CAS  Google Scholar 

  3. Lee KT, Jung YS, Oh SM (2003) Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J Am Chem Soc 125:5652–5653

    Article  CAS  Google Scholar 

  4. Sun YG, Xia YN (2003) Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett 3:1569–1572

    Article  CAS  Google Scholar 

  5. Hassoun J, Derrien G, Panero S, Scrosati B (2008) A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv Mater 20:3169–3175

    Article  CAS  Google Scholar 

  6. Xu YH, Liu Q, Zhu YJ, Liu YH, Langrock A, Zachariah MR, Wang CS (2013) Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett 13:470–474

    Article  CAS  Google Scholar 

  7. Wolfenstine J, Foster D, Read J, Behl WK, Luecke W (2000) Experimental confirmation of the model for microcracking during lithium charging in single-phase alloys. J Power Sources 87:1–3

    Article  CAS  Google Scholar 

  8. Wolfenstine J (1999) Critical grain size for microcracking during lithium insertion. J Power Sources 79:111–113

    Article  CAS  Google Scholar 

  9. Dimitrijevic BJ, Aifantis KE, Hackl K (2012) The influence of particle size and spacing on the fragmentation of nanocomposite anodes for Li batteries. J Power Sources 206:343–348

    Article  CAS  Google Scholar 

  10. Chen JZ, Yang L, Fang SH, Hirano S (2012) Synthesis of mesoporous Sn-Cu composite for lithium ion batteries. J Power Sources 209:204–208

    Article  CAS  Google Scholar 

  11. Gonzalez JR, Alcantara R, Nacimiento F, Tirado JL (2012) Optimization of tin intermetallics and composite electrodes for lithium-ion batteries obtained by sonochemical synthesis. J Solid State Electrochem 17:2495–2501

    Article  Google Scholar 

  12. Nacimiento F, Lavela P, Tirado JL, Jimenez-Mateos JM (2012) A facile carbothermal preparation of Sn-Co-C composite electrodes for Li-ion batteries using low-cost carbons. J Solid State Electrochem 16:953–962

    Article  CAS  Google Scholar 

  13. Shin NR, Kang YM, Song MS, Kim DY, Kwon HS (2009) Effects of Cu substrate morphology and phase control on electrochemical performance of Sn-Ni alloys for Li-ion battery. J Power Sources 186:201–205

    Article  CAS  Google Scholar 

  14. Lee JM, Chang WS, Yu BC, Kim H, Im D, Doo SG, Sohn HJ (2012) Enhancement of cyclability using recombination reaction of Cu for Sn2Fe nanocomposite anode for lithium-ion batteries. Electrochem Commun 12:928–932

    Article  Google Scholar 

  15. Kepler KD, Vaughey JT, Thackeray MM (1999) Li x Cu6Sn5 (0 < x < 13): an intermetallic insertion electrode for rechargeable lithium batteries. Electrochem Solid-State Lett 2:307–309

    Article  CAS  Google Scholar 

  16. Larcher D, Beaulieu LY, Macneil DD, Dahn JR (2000) In situ X-ray study of the electrochemical reaction of Li with η΄-Cu6Sn5. J Electrochem Soc 147:1658–1662

    Article  CAS  Google Scholar 

  17. Hu RZ, Zeng MQ, Zhu M (2009) Cyclic durable high-capacity Sn/Cu6Sn5 composite thin film anodes for lithium ion batteries prepared by electron-beam evaporation deposition. Electrochim Acta 54:2843–2850

    Article  CAS  Google Scholar 

  18. Tamura N, Kato Y, Mikami A, Kamino M, Matsuta S, Fujitani S (2006) Study on Sn-Co alloy electrodes for lithium secondary batteries. J Electrochem Soc 153:A2227–A2231

    Article  CAS  Google Scholar 

  19. Yang S, Feng X, Zhi L, Cao Q, Maier J, Müllen K (2010) Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv Mater 22:838–842

    Article  CAS  Google Scholar 

  20. Tang YF, Yang L, Fang SH, Qiu Z (2009) Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries. Electrochim Acta 54:6244–6249

    Article  CAS  Google Scholar 

  21. Ma H, Cheng FY, Chen J, Zhao JZ, Li CS, Tao ZL, Liang J (2007) Nest-like silicon nanospheres for high-capacity lithium storage. Adv Mater 19:4067–4070

    Article  CAS  Google Scholar 

  22. Kim H, Cho J (2008) Template synthesis of hollow Sb nanoparticles as a high-performance lithium battery anode material. Chem Mater 20:1679–1681

    Article  CAS  Google Scholar 

  23. Ye JF, Zhang HJ, Yang R, Li XG, Qi LM (2010) Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6:296–306

    Article  CAS  Google Scholar 

  24. Park MH, Cho YH, Kim K, Kim J, Liu M, Cho J (2011) Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. Angew Chem Int Ed 50:9647–9650

    Article  CAS  Google Scholar 

  25. Zeng HC (2006) Synthetic architecture of interior space for inorganic nanostructures. J Mater Chem 16:649–662

    Article  CAS  Google Scholar 

  26. Yu JG, Guo HT, Davis SA, Mann S (2006) Fabrication of hollow inorganic microspheres by chemically induced self-transformation. Adv Funct Mater 16:2035–2041

    Article  CAS  Google Scholar 

  27. Caruso F, Caruso RA, Mӧhwald H (1998) Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282:1111–1114

    Article  CAS  Google Scholar 

  28. Velikov KP, van Blaaderen A (2001) Synthesis and characterization of monodisperse core-shell colloidal spheres of zinc sulfide and silica. Langmuir 17:4779–4786

    Article  CAS  Google Scholar 

  29. Gao XY, Zhang JS, Zhang LD (2002) Hollow sphere selenium nanoparticles: their in-vitro Anti hydroxyl radical effect. Adv Mater 14:290–293

    Article  CAS  Google Scholar 

  30. Qi LM, Li J, Ma JM (2002) Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers. Adv Mater 14:300–303

    Article  CAS  Google Scholar 

  31. Railsback JG, Johnston-Peck Aaron C, Wang JW, Tracy JB (2010) Size-dependent nanoscale Kirkendall effect during the oxidation of nickel nanoparticles. ACS Nano 4:1913–1920

    Article  CAS  Google Scholar 

  32. Zhou SH, Varughese B, Eichhorn B, Jackson G, McIlwrath K (2005) Pt-Cu core-shell and alloy nanoparticles for heterogeneous NO x reduction: anomalous stability and reactivity of a core-shell nanostructure. Angew Chem Int Ed 44:4539–4543

    Article  CAS  Google Scholar 

  33. Ke FS, Huang L, Cai JS, Sun SG (2007) Electroplating synthesis and electrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ion batteries. Electrochim Acta 52:6741–6747

    Article  CAS  Google Scholar 

  34. Li QY, Hu SJ, Wang HQ, Wang FP, Zhong XX, Wang XY (2009) Study of copper foam-supported Sn thin film as a high-capacity anode for lithium-ion batteries. Electrochim Acta 54:5884–5888

    Article  CAS  Google Scholar 

  35. Kim MG, Sim S, Cho J (2010) Novel core-shell Sn-Cu anodes for lithium rechargeable batteries prepared by a redox-transmethalation reaction. Adv Mater 22:5154–5158

    Article  CAS  Google Scholar 

  36. Naille S, Dedryvère R, Martinez H, Leroy S, Lippens PE, Jumas JC, Gonbeau D (2007) XPS study of electrode/electrolyte interfaces of η-Cu6Sn5 electrodes in Li-ion batteries. J Power Sources 174:1086–1090

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51143009 and 51273145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, X., Tang, X., Ma, D. et al. Novel hollow Sn–Cu composite nanoparticles anodes for Li-ion batteries prepared by galvanic replacement reaction. J Solid State Electrochem 18, 1137–1145 (2014). https://doi.org/10.1007/s10008-013-2370-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2370-2

Keywords

Navigation