Skip to main content
Log in

Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Well-dispersed nanoparticles of nickel hydroxide were prepared via a simple electrochemical method. Electrodeposition experiments were performed from 0.005 M Ni(NO3)2 bath at a constant current density of 0.1 mA cm−2 on the steel cathode for 1 h. Recording the potential values during the deposition process revealed that the reduction of water has major role in the base electrogeneration at the applied conditions. The obtained deposit was characterized by the X-ray diffraction (XRD), infrared (IR), differential scanning calorimeter–thermogravimetric analysis, carbon–nitrogen–hydrogen (CHN), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The CHN, XRD, and IR analyses showed that the obtained deposit has α phase of Ni(OH)2 with intercalated nitrate ions in its structure. Morphological characterization by SEM and TEM revealed that the prepared α-Ni(OH)2 is composed of well-dispersed ultrafine particles with the size of about 5 nm. The supercapacitive performance of the prepared nanoparticles was analyzed by means of cyclic voltammetry and galvanostatic charge–discharge tests. The electrochemical measurements showed an excellent supercapacitive behavior of the prepared α-Ni(OH)2 nanoparticles. It was also observed that the α-Ni(OH)2 ultrafine particles have better electrochemical characteristic and supercapacitive behavior than β-Ni(OH)2 ultrafine nanoparticles, including less positive charging potential, lower E a − E c value, better reversibility, higher E OER − E a, higher utilization of active material, higher proton diffusion coefficient, greater discharge capacity, and better cyclability. These results make the α-Ni(OH)2 nanoparticles as an excellent candidate for the supercapacitor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Park JH, Park OO, Shin KH, Jin CS, Kim JH (2002) An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode. Electrochem Solid State Lett 5:H7–H10

    Article  CAS  Google Scholar 

  2. Wu MS, Huang KC (2011) Enhanced electrochemical performance of nickel hydroxide electrode with monolayer hollow spheres composed of nanoflakes. Int J Hydrog Energy 36:13407–13413

    Article  CAS  Google Scholar 

  3. Liang YY, Bao SJ, Li HL (2007) Nanocrystalline nickel cobalt hydroxides/ultrastable Y zeolite composite for electrochemical capacitors. J Solid State Electrochem 164:571–576

    Article  Google Scholar 

  4. Wang YG, Yu L, Xia YY (2006) Electrochemical capacitance performance of hybrid supercapacitors based on Ni(OH)2 carbon nanotube. J Electrochem Soc 153:A743–A748

    Article  CAS  Google Scholar 

  5. Coudun C, Hochepied JF (2005) Nickel hydroxide “stacks of pancakes” obtained by the coupled effect of ammonia and template agent. J Phys Chem B 109:6069–6074

    Article  CAS  Google Scholar 

  6. Wang XY, Luo H, Parkhutik PV, Millan AC, Matveeva E (2003) Studies of the performance of nanostructural multiphase nickel hydroxide. J Power Sources 115:153–160

    Article  Google Scholar 

  7. Yang LX, Zhu YJ, Tong H, Liang ZH, Li L, Zhang L (2007) Hydrothermal synthesis of nickel hydroxide nanostructures in mixed solvents of water and alcohol. J Solid State Chem 180:2095–2101

    Article  CAS  Google Scholar 

  8. Ramesh TN, Kamath PV (2006) Synthesis of nickel hydroxide: effect of precipitation conditions on phase selectivity and structural disorder. J Power Sources 156:655–666

    Article  CAS  Google Scholar 

  9. Barnard R, Randell CF, Tye FL (1980) Studies concerning charged nickel hydroxide electrodes. I. Measurement of reversible potentials. J Appl Electrochem 10:109–125

    Article  CAS  Google Scholar 

  10. Kamath PV, Dixit M, Indira L, Shukla AK, Lumar VG, Munichandraiah N (1994) Stabilized α-Ni(OH)2 as electrode material for alkaline secondary cells. J Electrochem Soc 141:2956–2969

    Article  CAS  Google Scholar 

  11. Hu WK, Gao XP, Noreus D, Burchardt T, Nakst NK (2006) Evaluation of nano-crystal sized α-nickel hydroxide as an electrode material for alkaline rechargeable cells. J Power Sources 160:704–710

    Article  CAS  Google Scholar 

  12. Lang JW, Kong LB, Liu M, Luo YC, Kang L (2010) Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. J Solid State Electrochem 14:1533–1539

    Article  CAS  Google Scholar 

  13. Li YW, Yao JH, Liu CJ, Zhao WM, Deng WX, Zhong SK (2010) Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. Int J Hydrog Energy 35:2539–2545

    Article  CAS  Google Scholar 

  14. Zhao YL, Wang JM, Chen H, Pan T, Zhang JQ, Cao CN (2004) Different additives-substituted α-nickel hydroxide prepared by urea decomposition. Electrochim Acta 50:91–98

    Article  Google Scholar 

  15. Wu MY, Wang JM, Zhang JQ, Cao CN (2006) Effects of coprecipitated manganese on the structure and electrochemical performance of Al-substituted α-nickel hydroxide. J Solid State Electrochem 10:411–415

    Article  CAS  Google Scholar 

  16. Chen H, Wang JM, Zhao YL, Zhang JQ, Cao CN (2005) Electrochemical performance of Zn-substituted Ni(OH)2 for alkaline rechargeable batteries. J Solid State Electrochem 9:421–428

    Article  CAS  Google Scholar 

  17. Bao J, Zhu Y, Zhang Z, Xu Q, Zhao W, Chen J, Zhang W, Han Q (2013) Structure and electrochemical properties of nanometer Cu substituted α-nickel hydroxide. Mater Res Bull 48:422–428

    Article  CAS  Google Scholar 

  18. Wang X, Sebastian PJ, Millan AC, Parkhutik PV, Gamboa SA (2005) Electrochemical study of nanostructured multiphase nickel hydroxide. J New Mater Electrochem Syst 8:101–108

    CAS  Google Scholar 

  19. Luo FC, Chen QY, Yin ZL (2007) Electrochemical performance of multiphase nickel hydroxide. Trans Nonferrous Met Soc China 17:654–658

    Article  Google Scholar 

  20. Ramesh TN, Vishnu Kamath P (2009) The effect of crystallinity and structural disorder on the electrochemical performance of substituted nickel hydroxide electrodes. J Solid State Electrochem 13:763–771

    Article  CAS  Google Scholar 

  21. Ramesh TN (2009) Crystallite size effects in stacking faulted nickel hydroxide and its electrochemical behavior. Mater Chem Phys 114:618–623

    Article  CAS  Google Scholar 

  22. Liu X, Yu L (2004) Influence of nanosized Ni(OH)2 addition on the electrochemical performance of nickel hydroxide electrode. J Power Sources 128:326–330

    Article  CAS  Google Scholar 

  23. Liu X, Yu L (2004) Synthesis of nanosized nickel hydroxide by solid-state reaction at room temperature. Mater Lett 58:1327–1330

    Article  CAS  Google Scholar 

  24. Watanabe K, Kikuoka T, Kumagai N (1995) Physical and electrochemical characteristics of nickel hydroxide as a positive material for rechargeable alkaline batteries. J Appl Electrochem 25:219–226

    CAS  Google Scholar 

  25. Lang JW, Kong LB, Wu WJ, Liu M, Luo YC, Kang L (2003) A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors. J Solid State Electrochem 13:333–340

    Article  Google Scholar 

  26. Aghazadeh M, Nozad Golikand A, Ghaemi M (2011) Synthesis, characterization, and electrochemical properties of ultrafine β-Ni(OH)2 nanoparticles. Int J Hydrog Energy 36:8674–8679

    Article  CAS  Google Scholar 

  27. Guan X, Deng JC (2007) Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Mater Lett 61:621–625

    Article  CAS  Google Scholar 

  28. Dubal DP, Fulari VJ, Lokhande CD (2012) Effect of morphology on supercapacitive properties of chemically grown β-Ni(OH)2 thin films. Micro Meso Mater 151:511–516

    Article  CAS  Google Scholar 

  29. Yang D, Wang R, He M, Zhang J, Liu Z (2005) Ribbon- and boardlike nanostructures of nickel hydroxide: synthesis, characterization, and electrochemical properties. J Phys Chem B 109:7654–7658

    Article  CAS  Google Scholar 

  30. Wang YX, Hu Z, Wu HY (2011) Preparation and electrochemical performance of alpha-nickel hydroxide nanowires. Mater Chem Phys 126:580–583

    Article  CAS  Google Scholar 

  31. Sinem Ertas F, Kaş R, Unal U, Birer O (2006) Sonochemical synthesis and electrochemical characterization of α-nickel hydroxide: precursor effects. J Solid State Electrochem 17:1455–1462

    Article  Google Scholar 

  32. Kalam A, Al-Shihri AS, Al-Sehemi AG, Awwad NS, Du G, Ahmad T (2013) Effect of pH on solvothermal synthesis of β-Ni(OH)2 and NiO nano-architectures: surface area studies, optical properties and adsorption studies. Superlattice Microst 55:83–97

    Article  CAS  Google Scholar 

  33. Song X, Gao L (2008) Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties. J Phys Chem C 112:15299–15305

    Article  CAS  Google Scholar 

  34. Subbaiah T, Mallick SC, Mishra KG, Sanjay K, Das RP (2002) Electrochemical precipitation of nickel hydroxide. J Power Sources 112:562–569

    Article  CAS  Google Scholar 

  35. Sasaki Y, Yamashita T (1998) Effect of electrolytic conditions on the deposition of nickel hydroxide. Thin Solid Films 334:117–119

    Article  CAS  Google Scholar 

  36. Guangjie S, Yue Y, Shipin Z, Pei H (2009) Supercapacitor characteristic of La-doped Ni(OH)2 prepared by electrodeposition. Rare Metals 28:132–136

    Article  Google Scholar 

  37. Yang G, Wu Y, Wang B, Guo W, Ren Z, Bu Z, Miao C, Li H (2012) Effects of deposition temperature and annealing temperature on the morphology and electrochemical capacitance of Ni(OH)2 thin films. J Solid State Electrochem 16:3761–3767

    Article  CAS  Google Scholar 

  38. Zhitomirsky I (2004) Composite nickel hydroxide–polyelectrolyte films prepared by cathodic electrosynthesis. J Appl Electrochem 34:235–240

    Article  CAS  Google Scholar 

  39. Chou S, Cheng F, Chen J (2005) Electrochemical deposition of Ni(OH)2 and Fe-doped Ni(OH)2 tubes. Eur J Inorg Chem 20:4035–4039

    Article  Google Scholar 

  40. Yang G, Xu C, Li H (2008) Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem Commun 48:6537–6539

    Article  Google Scholar 

  41. Zhao DD, Bao SJ, Zhou WJ, Li HL (2007) Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem Commun 9:869–874

    Article  CAS  Google Scholar 

  42. Xua Y, Chen Y, Wu J, Li D, Ju H, Zheng J (2010) The determination of the kinetic parameters of electrochemical reaction in chemical power sources: a critical review. Int J Hydrog Energy 35:6366–6380

    Article  Google Scholar 

  43. Zhou WJ, Zhao DD, Xu MW, Xu CL, Li HL (2008) Effects of the electrodeposition potential and temperature on the electrochemical capacitance behavior of ordered mesoporous cobalt hydroxide films. Electrochim Acta 53:7210–7219

    Article  CAS  Google Scholar 

  44. Jagadale AD, Kumbhar VS, Dhawale DS, Lokhande CD (2013) Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes. Electrochim Acta 98:32–38

    Article  CAS  Google Scholar 

  45. Aghazadeh M (2012) Cathodic electrodeposition of ZrO2: impact of current density on the crystal structure, composition and morphology. J Electrochem Soc 159:E53–E58

    Article  CAS  Google Scholar 

  46. Liu B, Wang XY, Yung HT, Zhang YS, Song DY, Zhou ZX (1999) Physical and electrochemical characteristics of aluminium-substituted nickel hydroxide. J Appl Electrochem 29:855–860

    CAS  Google Scholar 

  47. Zhitomirsky I (2002) Cathodic electrodeposition of ceramic and organoceramic materials: fundamental aspects. Adv Colloid Interf Sci 97:279–317

    Article  CAS  Google Scholar 

  48. Zhao D, Zhou W (2007) Effects of deposition potential and anneal temperature on the hexagonal nanoporous nickel hydroxide films. Chem Mater 19:3882–3891

    Article  CAS  Google Scholar 

  49. Mohammad Shiri H, Aghazadeh M (2012) Synthesis, characterization and electrochemical properties of capsule-like NiO nanoparticles. J Electrochem Soc 159:E132–E138

    Article  Google Scholar 

  50. Baes CF, Mesmer RE (1976) Hydrolysis of cations. Wiley, New York

    Google Scholar 

  51. Liu HB, Xiang L, Jin Y (2006) Hydrothermal modification and characterization of Ni(OH)2 with high discharge capability. Cryst Growth Des 6:283–286

    Article  CAS  Google Scholar 

  52. Faure C, Delmas C, Fouassier M (1991) Characterization of a turbostratic α-nickel hydroxide quantitatively obtained from an NiSO4 solution. J Power Sources 35:279–290

    Article  CAS  Google Scholar 

  53. Mani B, Neufville JP (1988) Dehydration of chemically and electrochemically impregnated (CI and EI) nickel hydroxide electrodes. J Electrochem Soc 135:800–803

    Article  CAS  Google Scholar 

  54. Xiao HM, Wang JM (2004) Influence of Al content on the structure and electrochemical performance of Al substituted α-Ni(OH)2. J Inorg Mater 19:463–470

    CAS  Google Scholar 

  55. Tessier C, Haumesser PH, Bernard P, Delmas C (1999) The structure of Ni(OH)2: from the ideal material to the electrochemically active one. J Electrochem Soc 146:2059–2067

    Article  CAS  Google Scholar 

  56. Kokler U, Antonius C, Bauerlein P (2004) Advances in alkaline batteries. J Power Sources 127:45–52

    Article  Google Scholar 

  57. Jayashree RS, Kamath PV, Subbanna GN (2000) The effect of crystallinity on the reversible discharge capacity of nickel hydroxide. J Electrochem Soc 47:2029–2032

    Article  Google Scholar 

  58. Soler-Illia GAA, Jobbagy M, Regazzoni AE, Blesa MA (1999) Synthesis of nickel hydroxide by homogeneous alkalinization. Precipitation mechanism. Chem Mater 11:3140–3146

    Article  Google Scholar 

  59. Klug HP, Alexander LE (1974) X-ray diffraction procedures, 2nd edn. New York, Wiley

    Google Scholar 

  60. Jayashree RS, Vishnu Kamath P (1999) Factors governing the electrochemical synthesis of α-nickel (II) hydroxide. J Appl Electrochem 29:449–454

    Article  CAS  Google Scholar 

  61. Ganesh Kumar V, Bae SW, Lee JS, Nam KW, Kim KB (2006) Contraction of alpha-nickel hydroxide layers by excess coulombic attraction of anions. J Korean Chem Soc 50:141–152

    Article  Google Scholar 

  62. Cao X, Wei J, Luo Y, Zhou Z, Zhang Y (2000) Spherical nickel hydroxide composite electrode. Int J Hydrog Energy 25:643–647

    Article  CAS  Google Scholar 

  63. Oesten M, Wohlfahrt-Mehrens M, Strobele S, Kasper M, Huggins RA (1996) Structural aspects of undoped and doped nickel hydroxides. Ionics 2:293–301

    Article  CAS  Google Scholar 

  64. Wang XY, Yan J, Zhang YS, Yung HT, Song DY (1998) Cyclic voltammetric studies of pasted nickel hydroxide electrode microencapsulated by cobalt. J Appl Electrochem 28:1377–1382

    Article  CAS  Google Scholar 

  65. Wang X, Yan J, Yuan H, Zhang Y (1998) Surface modification and electrochemical studies of spherical nickel hydroxide. J Power Sources 72:221–225

    Article  CAS  Google Scholar 

  66. Tong GX, Liu FT, Wu WH, Shen JP, Hu X, Liang Y (2012) Polymorphous α- and β-Ni(OH)2 complex architectures: morphological and phasal evolution mechanisms and enhanced catalytic activity as non-enzymatic glucose sensors. Cryst Eng Commun 14:5963–5973

    Article  CAS  Google Scholar 

  67. Mridula D, Jayashree RS, Vishnu Kamath P, Shukla AK, Ganesh Kumar V, Munichandraiah N (1999) Electrochemically impregnated aluminum‐stabilized α‐nickel hydroxide electrodes. Electrochem Solid-State Lett 2:170–171

    Article  Google Scholar 

  68. Luo YY, Li GH, Duan GT, Zhang LD (2006) One-step synthesis of spherical alpha-Ni(OH)2 nanoarchitectures. Nanotechnology 17:4278–4283

    Article  CAS  Google Scholar 

  69. Cai FS, Zhang GY, Chen J, Gou XL, Liu HK, Dou SX (2004) Ni(OH)2 tubes with mesoscale dimensions as positive electrode materials of alkaline rechargeable batteries. Angew Chem Int Ed 43:4212–4216

    Article  CAS  Google Scholar 

  70. Southampton Electrochemistry Group (1985) Instrumental methods in electrochemistry. Ellis Horwood, England, p 178

    Google Scholar 

  71. Liu C, Chen S, Li Y (2012) Synthesis and electrochemical performance of α-nickel hydroxide codoped with Al3+ and Ca2+. Ionics 18:197–202

    Article  CAS  Google Scholar 

  72. Zimmerman AH, Effa PK (1984) Discharge kinetics of the nickel electrode. J Electrochem Soc 131:709–713

    Article  CAS  Google Scholar 

  73. Southampton Electrochem Group (1990) Instrumental methods in electrochemistry [M]. Ellis Horwood, New York

    Google Scholar 

  74. Motupally S, Streinz CC, Weiduer JW (1998) Proton diffusion in nickel hydroxide: prediction of active material utilization. J Electrochem Soc 145:29–34

    Article  CAS  Google Scholar 

  75. Xing S, Wang Q, Ma Z, Wu Y, Gao Y (2012) Synthesis of mesoporous α-Ni(OH)2 for high-performance supercapacitors. Mater Lett 78:99–101

    Article  CAS  Google Scholar 

  76. Wang YX, Hu ZA, Wu HY (2011) Preparation and electrochemical performance of alpha-nickel hydroxide nanowires. Mater Chem Phys 126:580–583

    Article  CAS  Google Scholar 

  77. Zou WY, Wang W, He BI, Sun MI, Yin YS (2010) Supercapacitive properties of hybrid films of manganese dioxide and polyaniline based on active carbon in organic electrolyte. J Power Sources 195:7489–7493

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Aghazadeh.

Additional information

Research Highlights

- A facile route was proposed for the preparation of ultrafine α-Ni(OH)2 nanoparticles.

- Excellent reaction reversibility and high proton diffusion coefficient was observed.

- High specific capacity and excellent long-term cycling stability was observed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aghazadeh, M., Ghaemi, M., Sabour, B. et al. Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. J Solid State Electrochem 18, 1569–1584 (2014). https://doi.org/10.1007/s10008-014-2381-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2381-7

Keywords

Navigation