Skip to main content
Log in

Segmental mobility and relaxation processes of Fe2O3 nanoparticle-loaded fast ionic transport nanocomposite gel polymer electrolyte

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The interaction of Fe2O3 nanoparticles emphasized between poly(propylene glycol) (PPG 4000) and silver triflate (AgCF3SO3) on the conformal changes of coordination sites and the electrochemical properties have been investigated. On the influence of Fe2O3 nanoparticles distribution, the interactions between the ether oxygen in C–O–C of the polymer chain with Ag+ ion as a result of bond strength of the C–O–C stretching vibration, the end group effect has been examined by Fourier transform infrared (FT-IR) spectroscopy. The formation of transient cross-links between polymer chains and filler particles appears to be a characteristic change in the glass transition temperature (T g) and enhance the effective number of cations as well. The strength of ion–polymer interactions was revealed by the transport of ions, t Ag+, and found to be in the range of 0.42–0.50, and the ionic conductivity was ascertained by complex impedance analysis with a maximum of 9.2 × 10−4 S cm−1 at 298 K with a corresponding concentration of 10 wt% Fe2O3 nanoparticles. The temperature dependence of conductivity has been examined based on the Vogel–Tammann–Fulcher (VTF) equation, thereby suggesting the segmental chain motion and free volume changes. From the impedance data, both the dielectric and modulus behaviours have been revealed and both were well correlated as a function of frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gray FM (1991) Solid polymer electrolytes: fundamentals and technological applications. VCH, New York

    Google Scholar 

  2. MacCallum JR, Vincent CA (eds) (1989) Polymer electrolyte reviews—2. Elsevier, London

    Google Scholar 

  3. MacCallum JR, Vincent CA (eds) (1987) Polymer electrolyte reviews—1. Elsevier, London

    Google Scholar 

  4. Angell CA, Liu C, Sanchez E (1993) Nature 362:137–139

    Article  CAS  Google Scholar 

  5. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nature 394:456–458

    Article  CAS  Google Scholar 

  6. Best AS, Adebahr J, Jacobsson P, MacFarlane DR, Forsyth M (2001) Macromolecules 34:4549–4555

    Article  CAS  Google Scholar 

  7. Castro WA, Zapata VH, Vargas RA, Mellander BE (2007) Electrochim Acta 53:1422–1426

    Article  CAS  Google Scholar 

  8. Jayathilaka PARD, Dissanayaka MAKL, Albinsson I, Mellander BE (2002) Electrochim Acta 47:3257–3268

    Article  CAS  Google Scholar 

  9. Druger SD, Nitzan A, Ratner MA (1983) J Chem Phys 79:3133–3142

    Article  CAS  Google Scholar 

  10. Marcinek M, Bac A, Lipka P, Zalewska A, Zukowska G, Borkowska R, Wieczorek W (2000) J Phys Chem 104:11088–11093

    Article  CAS  Google Scholar 

  11. Mustarelli P, Capiglia C, Quartarone E, Tomasi C, Ferloni P, Linati L (1999) Phys Rev B 60:7228–7233

    Article  CAS  Google Scholar 

  12. Wieczorek W, Siekierski M (1994) J Appl Phys 76:2220–2226

    Article  CAS  Google Scholar 

  13. Nan CW (1993) Prog Mater Sci 37:1–116

    Article  CAS  Google Scholar 

  14. Klein RJ, Zhang S, Dou S, Jones BH (2006) J Chem Phys 124:144903

    Article  Google Scholar 

  15. Natesan B, Karan NK, Katiyar RS (2006) Phys Rev E 74:042801

    Article  CAS  Google Scholar 

  16. Noto VD (2002) J Phys Chem B 106:11139

    Article  Google Scholar 

  17. Ferry A, Jacobsson P, Stevens JR (1996) J Phys Chem 100:12574–12582

    Article  CAS  Google Scholar 

  18. Schantz S (1991) J Chem Phys 94:6296–6306

    Article  CAS  Google Scholar 

  19. Ferry A (1997) J Chem Phys 107:9168–9175

    Article  CAS  Google Scholar 

  20. Albinsson I, Mellander BE, Stevens JR (1991) J Chem Phys 96:681–690

    Article  Google Scholar 

  21. Eliasson H, Albinsson I, Mellander BE (2000) Mater Res Bull 35:1053–1065

    Article  CAS  Google Scholar 

  22. Bernson A, Lindgren J (1994) Polymer 35:4842–4935

    Article  CAS  Google Scholar 

  23. Clancy S, Shriver DF, Ocrymowyez LA (1986) Macromolecules 19:606–611

    Article  CAS  Google Scholar 

  24. Jin JH, Hong SU, Won J, Kang YS (2000) Macromolecules 33:4932–4935

    Article  CAS  Google Scholar 

  25. Golodnitsky D, Livshits E, Kovarsky R, Peled E, Chung SH, Suarez S, Greenbaum G (2004) Electrochem Solid State Lett 7:A412–A415

    Article  CAS  Google Scholar 

  26. Sekhon SS, Singh A (1996) Bull Electrochem 12:671–675

    CAS  Google Scholar 

  27. Money BK, Hariharan K, Swenson J (2012) J Phys Chem B 116:7762–7770

    Article  CAS  Google Scholar 

  28. Do NST, Schaetzl DM, Dey B, Seabaugh AC, Fullerton-Shirey S (2012) J Phys Chem C 116:21216–21223

    Article  CAS  Google Scholar 

  29. Suthanthiraraj SA, Kumar R, Paul BJ (2009) Spectrochim Acta A 71:2012–2015

    Article  Google Scholar 

  30. Suthanthiraraj SA, Kumar R, Paul BJ (2010) J Appl Electrochem 40:401–408

    Article  CAS  Google Scholar 

  31. Suthanthiraraj SA, Kumar R, Paul BJ (2010) Ionics 16:145–151

    Article  CAS  Google Scholar 

  32. Suthanthiraraj SA, Kumar R, Paul BJ (2011) J Solid State Electrochem 15:561–570

    Article  CAS  Google Scholar 

  33. Vogal H (1921) Phys Z 22:645–646

    Google Scholar 

  34. Tamman G, Hesse EW (1926) Z Anorg Allg Chem 156

  35. Fulcher GS (1925) J Am Ceram Soc 8:339–355

    Article  CAS  Google Scholar 

  36. Basak P, Manorama SV, Singh RK, Om Parkash (2005) J Phys Chem B 109:1174–1182

    Article  CAS  Google Scholar 

  37. Jonscher AK (1983) Dielectric Relaxation in Solids. Chelsea Dielectrics, London

    Google Scholar 

  38. Noto VD, Vittadello M, Lavina S, Fauri M, Biscazzo (2001) J Phys Chem B 105:4584–4595

    Article  Google Scholar 

  39. Suthanthiraraj SA, Kumar R, Paul BJ (2011) Int J Nanosci 10:241–246

    Article  CAS  Google Scholar 

  40. Fu Y, Pathmanathan K, Stevens JR (1991) J Chem Phys 94:6323–6329

    Article  CAS  Google Scholar 

  41. Bruce PG, Vincent CA (1987) J Electroanal Chem 225:1–17

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Department of Science and Technology (DST), New Delhi for the financial support received for this work. One of the authors R.K. gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi for the award of Senior Research Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Austin Suthanthiraraj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Suthanthiraraj, S.A. Segmental mobility and relaxation processes of Fe2O3 nanoparticle-loaded fast ionic transport nanocomposite gel polymer electrolyte. J Solid State Electrochem 18, 1647–1656 (2014). https://doi.org/10.1007/s10008-014-2384-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2384-4

Keywords

Navigation