Skip to main content
Log in

The reduction of graphene oxide by elemental copper and its application in the fabrication of graphene supercapacitor

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, graphene oxide (GO) was directly reduced by copper to reduced graphene oxide (RGO) and formed a highly uniform RGO film on copper foil or copper-modified titanium (Ti) substrate. The characterization of as-prepared RGO film by FTIR and XRD indicated that GO was partially reduced by copper while some oxygen-containing groups still remained. The conductivity of the RGO film was improved from 3.76 × 103 to 2.98 × 104 S/m after it was further electrochemically reduced due to the removal of additional oxygen groups. The graphene supercapacitor prepared with this method exhibited better performances in a neutral aqueous electrolyte compared with that reported for graphene electrodes prepared by other fabrication methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197–200

    Article  CAS  Google Scholar 

  2. Wei DC, Liu YQ (2010) Adv Mater 22:3225–3241

    Article  CAS  Google Scholar 

  3. Park S, Ruoff RS (2009) Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  4. Tung VC, Allen MJ, Yang Y, Kaner RB (2009) Nat Nanotechnol 4:25–29

    Article  CAS  Google Scholar 

  5. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  6. Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Langmuir 24:10560–10564

    Article  CAS  Google Scholar 

  7. Li XL, Wang HL, Robinson JT, Sanchez H, Diankov G, Dai HJ (2009) J Am Chem Soc 131:15939–15944

    Article  CAS  Google Scholar 

  8. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  9. Eda G, Chhowalla M (2010) Adv Mater 22:2392–2415

    Article  CAS  Google Scholar 

  10. Loh KP, Bao QL, Ang PK, Yang JX (2010) J Mater Chem 20:2277–2289

    Article  CAS  Google Scholar 

  11. Guo YL, Di CA, Liu HT, Zheng JA, Zhang L, Yu G, Liu YQ (2010) ACS Nano 4:5749–5754

    Article  CAS  Google Scholar 

  12. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) Nano Lett 7:3394–3398

    Article  CAS  Google Scholar 

  13. Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) ACS Nano 2:463–470

    Article  CAS  Google Scholar 

  14. Pei S, Cheng HM (2012) Carbon 50:3210–3228

    Article  CAS  Google Scholar 

  15. Eda G, Fanchini G, Chhowalla M (2008) Nat Nanotechnol 3:270–274

    Article  CAS  Google Scholar 

  16. Harima Y, Setodoi S, Imae I, Komaguchi K, Ooyama Y, Ohshita J, Mizota H, Yano J (2011) Electrochim Acta 56:5363–5368

    Article  CAS  Google Scholar 

  17. Zhao J, Pei S, Ren W, Gao L, Cheng HM (2010) ACS Nano 4:5245–5252

    Article  CAS  Google Scholar 

  18. Moon IK, Lee J, Ruoff RS, Lee H (2010) Nat Commun 1:73–75

    Article  Google Scholar 

  19. Pei S, Zhao J, Du J, Ren W, Cheng HM (2010) Carbon 48:4466–4474

    Article  CAS  Google Scholar 

  20. Liu HT, Zhang L, Guo YL, Cheng C, Yang LJ, Jiang L, Yu G, Hu WP, Liu YQ, Zhu DB (2013) J Mater Chem C 1:3104–3109

    Article  CAS  Google Scholar 

  21. Conway BE (1999) Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer

  22. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  23. Vivekchand S, Rout C, Subrahmanyam K, Govindaraj A, Rao C (2008) J Chem Sci 120:9–13

    Article  CAS  Google Scholar 

  24. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  25. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  26. Le LT, Ervin MH, Qiu HW, Fuch BE, Lee WY (2011) Electrochem Commun 13:355–358

    Article  CAS  Google Scholar 

  27. Wang G, Yang J, Oark J, Gou X, Wang B, Liu H, Yao J (2008) J Phys Chem C 112:8192–8195

    Article  CAS  Google Scholar 

  28. Chen WF, Yan LF (2010) Nanoscale 2:559–563

    Article  CAS  Google Scholar 

  29. Xiong ZG, Zhang LL, Ma JZ, Zhao XS (2010) Chem Commun 46:6099–6101

    Article  CAS  Google Scholar 

  30. Tong X, Wang H, Wang G, Wan L, Ren Z, Bai J (2011) J Solid State Chem 184:982–989

    Article  CAS  Google Scholar 

  31. Gao W, Alemany LB, Ci L, Ajayan PM (2009) Nat Chem 1:403–408

    Article  CAS  Google Scholar 

  32. Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) J Am Chem Soc 130:5856–5857

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support by the National Nature Science Foundation of China (nos. 21107090 and 21271152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Yang, Y.J. The reduction of graphene oxide by elemental copper and its application in the fabrication of graphene supercapacitor. J Solid State Electrochem 18, 1621–1626 (2014). https://doi.org/10.1007/s10008-014-2391-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2391-5

Keywords

Navigation