Skip to main content
Log in

Synthesis of palladium nanoparticles supported on reduced graphene oxide-tungsten carbide composite and the investigation of its performance for electrooxidation of formic acid

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Palladium (Pd) nanoparticles are uniformly distributed on tungsten carbide (WC)-reduced graphene (RGO) oxide composite to synthesize a new electrocatalyst Pd-WC/RGO. The catalysts prepared with various amounts of tungsten carbide are characterized by transmission electron microscopy, energy dispersive spectrometry, and X-ray diffraction. The electrocatalytic performance of the prepared materials toward formic acid oxidation reaction is tested to evaluate the effect of adding WC. The results show that Pd-WC/RGO electrocatalyst with a 25 wt% WC (Pd-WC(25)/RGO) presented a narrow Pd particle size distribution both on the surface of RGO and WC nanocrystallites. Its current density of the positive main anodic peak of formic acid electrooxidation is up to 42.35 mA cm−2. Compared with the other catalysts, especially the Pd/RGO, the Pd-WC(25)/RGO demonstrate better electrocatalytic activity and higher stability toward the formic acid oxidation reaction. It is attributed to the small size and uniform dispersion of Pd NPs on both RGO sheets and WC nanocrystallines, and to the stronger synergistic effect between Pd NPs and WC nanocrystallines, which result from the proper mass percentage of 25 % WC in the Pd-WC(25)/RGO composite. The present work reveals that WC could be a good additive component, and the composite WC/RGO could be a better support in preparing Pd-based catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhu Y, Ha SY, Masel RI (2004) J Power Sources 130:8–14

    Article  CAS  Google Scholar 

  2. Rice C, Ha S, Masel RI, Wieckowski A (2003) J Power Sources 115:229–235

    Article  CAS  Google Scholar 

  3. Kang S, Lee J, Lee JK, Chung S-Y, Tak Y (2006) J Phys Chem B 110:7270–7274

    Article  CAS  Google Scholar 

  4. Kim Y, Kim HJ, Kim YS, Choi SM, Seo MH, Kim WB (2012) J Phys Chem C 116:18093–18100

    Article  CAS  Google Scholar 

  5. Wang S, Wang X, Jiang SP (2008) Nanotechnology 19:455602

    Article  Google Scholar 

  6. Yadav M, Xu Q (2012) Energy Environ Sci 5:9698

    Article  CAS  Google Scholar 

  7. Bai Z, Yang L, Li L, Lv J, Wang K, Zhang J (2009) J Phys Chem C 113:10568–10573

    Article  CAS  Google Scholar 

  8. Cheng F, Wang H, Sun Z, Ning M, Cai Z, Zhang M (2008) Electrochem Commun 10:798–801

    Article  CAS  Google Scholar 

  9. Wang R, Liao S, Ji S (2008) J Power Sources 180:205–208

    Article  CAS  Google Scholar 

  10. Wang X, Tang Y, Gao Y, Lu T (2008) J Power Sources 175:784–788

    Article  CAS  Google Scholar 

  11. Xu CW, Wang H, Shen PK, Jiang SP (2007) Adv Mater 19:4256–4259

    Article  CAS  Google Scholar 

  12. Zhu Y, Kang Y, Zou Z, Zhou Q, Zheng J, Xia B, Yang H (2008) Electrochem Commun 10:802–805

    Article  CAS  Google Scholar 

  13. Huang H, Wang X (2012) J Mater Chem 22:22533–22541

    Article  CAS  Google Scholar 

  14. Ha S, Larsen R, Masel RI (2005) J Power Sources 144:28–34

    Article  CAS  Google Scholar 

  15. Yang W, Yang S, Guo J, Sun G, Xin Q (2007) Carbon 45:397–401

    Article  CAS  Google Scholar 

  16. Morgan RD, Salehi-khojin A, Masel RI (2011) J Phys Chem C 115:19413–19418

    Article  CAS  Google Scholar 

  17. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  18. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282–286

    Article  CAS  Google Scholar 

  19. Li D, Kaner RB (2008) Science 320:1170–1171

    Article  CAS  Google Scholar 

  20. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  21. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nano 3:101–105

    Article  CAS  Google Scholar 

  22. Si Y, Samulski ET (2008) Chem Mater 20:6792–6797

    Article  CAS  Google Scholar 

  23. Muszynski R, Seger B, Kamat PV (2008) J Phys Chem C 112:5263–5266

    Article  CAS  Google Scholar 

  24. Zhao H, Yang J, Wang L, Tian C, Jiang B, Fu H (2011) Chem Commun (Camb) 47:2014–2016

    Article  CAS  Google Scholar 

  25. Li Y, Gao W, Ci L, Wang C, Ajayan PM (2010) Carbon 48:1124–1130

    Article  CAS  Google Scholar 

  26. Haan JL, Stafford KM, Morgan RD, Masel RI (2010) Electrochim Acta 55:2477–2481

    Article  CAS  Google Scholar 

  27. Yang G, Chen Y, Zhou Y, Tang Y, Lu T (2010) Electrochem Commun 12:492–495

    Article  CAS  Google Scholar 

  28. Morales-Acosta D, Ledesma-Garcia J, Godinez LA, Rodríguez HG, Álvarez-Contreras L, Arriaga LG (2010) J Power Sources 195:461–465

    Article  CAS  Google Scholar 

  29. Liu Z, Zhang X (2009) Electrochem Commun 11:1667–1670

    Article  CAS  Google Scholar 

  30. Jung C, Sánchez-Sánchez CM, Lin C-L, Rodríguez-López J, Bard AJ (2009) Anal Chem 81:7003–7008

    Article  CAS  Google Scholar 

  31. Zhou W, Lee JY (2007) Electrochem Commun 9:1725–1729

    Article  CAS  Google Scholar 

  32. Yu XW, Pickup PG (2009) J Power Sources 192:279–284

    Article  CAS  Google Scholar 

  33. Song H, Qiu X, Li X, Li F, Zhu W, Chen L (2007) J Power Sources 170:50–54

    Article  CAS  Google Scholar 

  34. Wang Y, Wang SY, Wang X (2009) Electrochem Solid State Lett 12:B73–B76

    Article  CAS  Google Scholar 

  35. Yadav M, Singh AK, Tsumori N, Xu Q (2012) J Mater Chem 22:19146

    Article  CAS  Google Scholar 

  36. Lu L, Li H, Hong Y, Luo Y, Tang Y, Lu T (2012) J Power Sources 210:154–157

    Article  CAS  Google Scholar 

  37. Sharma S, Ganguly A, Papakonstantinou P, Miao X, Li M, Hutchison JL, Delichatsios M, Ukleja S (2010) J Phys Chem C 114:19459–19466

    Article  CAS  Google Scholar 

  38. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Sa C, Buzaneva EV, Gorchinskiy AD (1999) Chem Mater 11:771–778

    Article  CAS  Google Scholar 

  39. Hummers JWS, Offeman RE (1958) J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  40. Li Y, Gao W, Ci L, Wang C, Ajayan PM (2010) Carbon 48:1124–1130

    Article  CAS  Google Scholar 

  41. Vidaković T, Christov M, Sundmacher K (2007) Electrochim Acta 52:5606–5613

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by International Science & Technology Cooperation Program of China (2010DFB63680) and National Natural Science Foundation of China (21376220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun’an Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, M., Liu, W., Zhao, D. et al. Synthesis of palladium nanoparticles supported on reduced graphene oxide-tungsten carbide composite and the investigation of its performance for electrooxidation of formic acid. J Solid State Electrochem 18, 1923–1932 (2014). https://doi.org/10.1007/s10008-014-2440-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2440-0

Keywords

Navigation