Skip to main content
Log in

Synthesis and characterization of NiCo2O4 nanorods for preparation of supercapacitor electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Here, a solvothermal method for synthesis of porous Ni–Co binary oxide (NiCo2O4) nanorods followed by thermal decomposition is described. The prepared nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Brunauer Emmett Teller (BET) methods. These porous NiCo2O4 nanostructures were promising candidates in the development of high capacity supercapacitors and having excellent cycling performance due to high specific surface area. In addition, the influence of annealing rate on the structure and electrochemical behavior of the synthesized nanorods was investigated. The results showed that the annealing rate had a direct effect on the crystalline properties and porosity of the nanorods and influenced on their electrochemical behaviors. The nanorods prepared by the annealing rate of about 1 °C min−1 indicated a rather high capacitance of 600 F g−1; moreover, a high retention capacitance of 80 % was achieved even after 1,500 cycles at 5 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  2. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 11:3577–3613

    Article  Google Scholar 

  3. Conway B (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications (POD). Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  4. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  5. Zhang LL, Zhou R, Zhao XS (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992

    Article  CAS  Google Scholar 

  6. Tian W, Wang X, Zhi C, Zhai T, Liu D, Zhang C, Golberg D, Bando Y (2013) Ni(OH)2 nanosheet @ Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energy 2:754–763

    Article  CAS  Google Scholar 

  7. Wang X, Tian W, Zhai T, Zhi C, Bando Y, Golberg D (2012) Cobalt (ii, iii) oxide hollow structures: fabrication, properties and applications. J Mater Chem 22:23310–23326

    Article  CAS  Google Scholar 

  8. Khamlich S, Bello A, Fabiane M, Ngom BD, Manyala N (2013) Hydrothermal synthesis of simonkolleite microplatelets on nickel foam-graphene for electrochemical supercapacitors. J Solid State Electrochem 17:2879–2886

    Article  CAS  Google Scholar 

  9. Wang X, Liu S, Wang H, Tu F, Fang D, Li Y (2012) Facile and green synthesis of Co3O4 nanoplates/graphene nanosheets composite for supercapacitor. J Solid State Electrochem 16:3593–3602

    Article  CAS  Google Scholar 

  10. Liu D, Wang X, Wang X, Tian W, Liu J, Zhi C, He D, Bando Y, Golberg D (2013) Ultrathin nanoporous Fe3O4–carbon nanosheets with enhanced supercapacitor performance. J Mater Chem A 1:1952–1955

    Article  CAS  Google Scholar 

  11. Wang H, Gao Q, Jiang L (2011) Facile Approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 7:2454–2459

    CAS  Google Scholar 

  12. Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  13. Ravinder NR, Reddy GR (2004) Development of cobalt – Manganese oxide electrodes for electrochemical capacitors. J New Mater Electrochem Syst 7:317–321

    Google Scholar 

  14. Zhao GY, Xu CL, Li HL (2007) Highly ordered cobalt-manganese oxide (CMO) nanowire array thin film on Ti/Si substrate as an electrode for electrochemical capacitor. J Power Sources 163:1132–1136

    Article  CAS  Google Scholar 

  15. Fang DL, Wu BC, Yan Y, Mao AQ, Zheng CH (2012) Synthesis and characterization of mesoporous Mn–Ni oxides for supercapacitors. J Solid State Electrochem 16:135–142

    Article  CAS  Google Scholar 

  16. Jiang H, Ma J, Li C (2012) Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors. Chem Commun 48:4465–4467

    Article  CAS  Google Scholar 

  17. Wei TY, Chen CH, Chien HC, Lu SY, Hu CC (2010) A Cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv Mater 22:347–351

    Article  CAS  Google Scholar 

  18. Wu YQ, Chen XY, Ji PT, Zhou QQ (2011) Sol–gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors. Electrochim Acta 56:7517–7522

    Article  CAS  Google Scholar 

  19. Yokoshima K, Shibutani T, Hirota M, Sugimoto W, Murakami Y, Takasu Y (2006) Electrochemical supercapacitor behavior of nanoparticulate rutile-type Ru1−x V x O2. J Power Sources 160:1480–1486

    Article  CAS  Google Scholar 

  20. Gupta V, Gupta S, Miura N (2008) Potentiostatically deposited nanostructured Co x Ni1−x layered double hydroxides as electrode materials for redox-supercapacitors. J Power Sources 175:680–685

    Article  CAS  Google Scholar 

  21. Gupta V, Gupta S, Miura N (2010) Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor. J Power Sources 195:3757–3760

    Article  CAS  Google Scholar 

  22. Rajagopalan T, Reddy GB (1999) Effect of annealing rate on the crystallization process in Ge5Bi18Se77 films. Thin Solid Films 353:254–258

    Article  CAS  Google Scholar 

  23. Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749

    Article  CAS  Google Scholar 

  24. Xiao J, Yang S (2011) Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Advances 1:588–595

    Article  CAS  Google Scholar 

  25. Wang D, Wang Q, Wang T (2011) Morphology-Controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. Inorg Chem 50:6482–6492

    Article  CAS  Google Scholar 

  26. Meher SK, Rao GR (2011) Ultralayered Co3O4 for High-performance supercapacitor applications. J Phys Chem C 115:15646–15654

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Iraji zad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jokar, E., zad, A.I. & Shahrokhian, S. Synthesis and characterization of NiCo2O4 nanorods for preparation of supercapacitor electrodes. J Solid State Electrochem 19, 269–274 (2015). https://doi.org/10.1007/s10008-014-2592-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2592-y

Keywords

Navigation