Skip to main content
Log in

Synthesis of amorphous cobalt-boron alloy/highly ordered mesoporous carbon nanofiber arrays as advanced pseudocapacitor material

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Mesoporous carbon electrodes have been doped with Co–B nanoparticles via a chemical reduction approach and successfully used for pseudocapacitor application. The morphology is investigated by powder X-ray diffractions (PXRDs), small-angle X-ray scattering (SAXS), inductively coupled plasma (ICP), and transmission electron microscope (TEM). The TEM image displays that the Co–B is highly dispersed along the mesoporous carbon support which are critical for the pseudocapacitor application. Cobalt–boron/highly ordered mesoporous carbon nanofiber arrays (Co–B/MCNAs) are investigated by cyclic voltammetry, charge/discharge test, and electrochemical impedance spectroscopy. The as-synthesized Co-B/MCNAs exhibit remarkable pseudocapacitive activities including high specific capacitance (531 F g−1 at 5 mV s−1), good rate capability (315 F g−1 at 50 mV s−1), and excellent cycling stability. This value is about 2.7-fold and 1.7-fold higher than MCNAs and Co–B, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shirshova N, Qian H, Shaffer MS, Steinke JH, Greenhalgh ES, Curtis PT, Kucernak A, Bismarck A (2013) Structural composite supercapacitors. Compos A: Appl Sci Manuf 46:96–107

    Article  CAS  Google Scholar 

  2. Hughes M, Chen GZ, Shaffer MS, Fray DJ, Windle AH (2002) Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem Mater 14(4):1610–1613

    Article  CAS  Google Scholar 

  3. Peng C, Zhang S, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18(7):777–788

    Article  CAS  Google Scholar 

  4. Kim T, Jung G, Yoo S, Suh KS, Ruoff RS (2013) Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7(8):6899–6905

    Article  CAS  Google Scholar 

  5. Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132(21):7472–7477

    Article  CAS  Google Scholar 

  6. Wei J, Zhou D, Sun Z, Deng Y, Xia Y, Zhao D (2013) A controllable synthesis of rich nitrogen‐doped ordered mesoporous carbon for CO2 capture and supercapacitors. Adv Funct Mater 23(18):2322–2328

    Article  CAS  Google Scholar 

  7. Huang L, Chen D, Ding Y, Feng S, Wang ZL, Liu M (2013) Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13(7):3135–3139

    Article  CAS  Google Scholar 

  8. Huang C-W, Hsu C-H, Kuo P-L, Hsieh C-T, Teng H (2011) Mesoporous carbon spheres grafted with carbon nanofibers for high-rate electric double layer capacitors. Carbon 49(3):895–903

    Article  CAS  Google Scholar 

  9. XianáGuo C, MingáLi C (2011) A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance. Energ & Environ Sci 4(11):4504–4507

    Article  Google Scholar 

  10. Cheng Y, Lu S, Zhang H, Varanasi CV, Liu J (2012) Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett 12(8):4206–4211

    Article  CAS  Google Scholar 

  11. Rakhi R, Chen W, Cha D, Alshareef H (2012) Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12(5):2559–2567

    Article  CAS  Google Scholar 

  12. Xiao J, Yang S (2011) Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors. RSC Adv 1(4):588–595

    Article  CAS  Google Scholar 

  13. Rauda IE, Augustyn V, Dunn B, Tolbert SH (2013) Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials. Acc Chem Res 46(5):1113–1124

    Article  CAS  Google Scholar 

  14. Liu H-J, Wang X-M, Cui W-J, Dou Y-Q, Zhao D-Y, Xia Y-Y (2010) Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. J Mater Chem 20(20):4223–4230

    Article  CAS  Google Scholar 

  15. Patel MN, Wang X, Wilson B, Ferrer DA, Dai S, Stevenson KJ, Johnston KP (2010) Hybrid MnO2–disordered mesoporous carbon nanocomposites: synthesis and characterization as electrochemical pseudocapacitor electrodes. J Mater Chem 20(2):390–398

    Article  CAS  Google Scholar 

  16. Jang JH, Han S, Hyeon T, Oh SM (2003) Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes. J Power Sources 123(1):79–85

    Article  CAS  Google Scholar 

  17. Dai M, Song L, LaBelle JT, Vogt BD (2011) Ordered mesoporous carbon composite films containing cobalt oxide and vanadia for electrochemical applications. Chem Mater 23(11):2869–2878

    Article  CAS  Google Scholar 

  18. Wang YD, Ai XP, Yang HX (2004) Electrochemical hydrogen storage behaviors of ultrafine amorphous Co–B alloy particles. Chem Mater 16(24):5194–5197

    Article  CAS  Google Scholar 

  19. Liu Y, Wang Y, Xiao L, Song D, Wang Y, Jiao L, Yuan H (2008) Structure and electrochemical behaviors of a series of Co–B alloys. Electrochim Acta 53(5):2265–2271

    Article  CAS  Google Scholar 

  20. Shen J-H, Chen Y-W (2007) Catalytic properties of bimetallic NiCoB nanoalloy catalysts for hydrogenation of p-chloronitrobenzene. J Mol Catal A Chem 273(1):265–276

    Article  CAS  Google Scholar 

  21. Yu ZB, Qiao MH, Li HX et al. (1997) Preparation of amorphous NiCoB alloys and the effect of cobalt on their hydrogenation activity. Appl Catal A Gen 163(1):1–13

  22. Nithya V, Kalai Selvan R, Kalpana D, Vasylechko L, Sanjeeviraja C (2013) Synthesis of Bi2WO6 nanoparticles and its electrochemical properties in different electrolytes for pseudocapacitor electrodes. Electrochim Acta 109:720–731

    Article  CAS  Google Scholar 

  23. Jiang H, Li C, Sun T, Ma J (2012) A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. Nanoscale 4(3):807–812

    Article  CAS  Google Scholar 

  24. Zhang Y, Xia X, Tu J, Mai Y, Shi S, Wang X, Gu C (2012) Self-assembled synthesis of hierarchically porous NiO film and its application for electrochemical capacitors. J Power Sources 199:413–417

    Article  CAS  Google Scholar 

  25. Jayalakshmi M, Balasubramanian K (2009) Solution combustion synthesis of Fe2O3/C, Fe2O3-SnO2/C, Fe2O3-ZnO/C composites and their electrochemical characterization in non-aqueous electrolyte for supercapacitor application. Int J Electrochem Sci 4:878–886

    CAS  Google Scholar 

  26. Xia X-H, Tu J-P, Wang X-L, Gu C-D, Zhao X-B (2011) Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. Chem Commun 47(20):5786–5788

    Article  CAS  Google Scholar 

  27. Hu B, Qin X, Asiri AM, Alamry KA, Al-Youbi AO, Sun X (2013) Fabrication of Ni(OH)2 nanoflakes array on Ni foam as a binder-free electrode material for high performance supercapacitors. Electrochim Acta 107:339–342

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bohejin Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Tan, Y., Gao, Y. et al. Synthesis of amorphous cobalt-boron alloy/highly ordered mesoporous carbon nanofiber arrays as advanced pseudocapacitor material. J Solid State Electrochem 19, 593–598 (2015). https://doi.org/10.1007/s10008-014-2637-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2637-2

Keywords

Navigation