Skip to main content
Log in

Controlled synthesis and electrochemical application of skein-shaped NiO nanostructures

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A simple, economical and mild solution chemistry method was used to synthesize diverse nickel oxide (NiO) nanostructures employing methionine as a growth-directing agent. The as-synthesized NiO nanostructures were observed to possess a unique skein-shape morphology with uniform spherical distribution. The NiO nanoskein (NiO NSk) formation was extensively studied using X-ray diffraction (XRD), X-ray photoelectron microscopy (XPS), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) techniques, respectively. The unique NiO NSks exhibited better electrocatalytic activity towards glucose oxidation in alkaline media, enabling the development of a highly sensitive non-enzymatic glucose sensor. The observed analytical properties included high sensitivity (1915 μA mM−1 cm−2), wide linear range (0.1–5.0 mM), low detection limit (0.7 μM), higher stability and reproducibility. Moreover, the sensor is selective in the presence of interfering species such as ascorbic acid (AA), uric acid (UA) and dopamine (DP) during the non-enzymatic glucose sensing. The worthy-of-notice electrocatalytic activity and economical feasible preparation of NiO NSk-shaped electroactive material for direct glucose-sensing applications make the present study of high interest for the fabrication of low-cost devices. A NiO NSk-based glucose sensor has also been employed for glucose determination in human serum with adequate results, suggesting high potential for the routine monitoring of glucose from biotechnology, clinical and food industry samples.

Graphical representation of NiO NSks formation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Heli H, Sattarahmady N, Vais RD, Karimian K (2014) Nickel hydroxide nanopetals: one-pot green synthesis, characterization and application for the electrocatalytic oxidation and sensitive detection of montelukast. Sensor Actuat B: Chem 196:631–639

    Article  CAS  Google Scholar 

  2. Combustible solid precursors to nanocrystalline oxide materials. In: Chemistry of nanocrystalline oxide materials. pp 9-41. doi:10.1142/9789812793157_0002

  3. Li C, Liu Y, Li L, Du Z, Xu S, Zhang M, Yin X, Wang T (2008) A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose. Talanta 77(1):455–459

    Article  CAS  Google Scholar 

  4. Umar A, Rahman MM, Hahn Y-B (2009) MgO polyhedral nanocages and nanocrystals based glucose biosensor. Electrochem Commun 11(7):1353–1357

    Article  CAS  Google Scholar 

  5. Chen T, Li X, Qiu C, Zhu W, Ma H, Chen S, Meng O (2014) Electrochemical sensing of glucose by carbon cloth-supported Co3O4/PbO2 core-shell nanorod arrays. Biosens Bioelectron 53:200–206

    Article  CAS  Google Scholar 

  6. Yi W, Yang D, Chen H, Liu P, Tan J, Li H (2014) A highly sensitive nonenzymatic glucose sensor based on nickel oxide–carbon nanotube hybrid nanobelts. J Solid State Electrochem 18(4):899–908

    Article  CAS  Google Scholar 

  7. Xu J, Gao L, Cao J, Wang W, Chen Z (2011) Electrochemical capacitance of nickel oxide nanotubes synthesized in anodic aluminum oxide templates. J Solid State Electrochem 15(9):2005–2011

    Article  CAS  Google Scholar 

  8. Vassilyev YB, Khazova OA, Nikolaeva NN (1985) Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: part I. Adsorption and oxidation on platinum. J Electroanal Chem Interfacial Electrochem 196(1):105–125

    Article  Google Scholar 

  9. Ding Y, Wang Y, Su L, Bellagamba M, Zhang H, Lei Y (2010) Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosens Bioelectron 26(2):542–548

    Article  CAS  Google Scholar 

  10. Lyons MEG, Fitzgerald CA, Smyth MR (1994) Glucose oxidation at ruthenium dioxide based electrodes. Anly 119(5):855–861

    Article  CAS  Google Scholar 

  11. Chen J, Zhang W-D, Ye J-S (2008) Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem Commun 10(9):1268–1271

    Article  CAS  Google Scholar 

  12. Chekin F, Tahermansouri H, Besharat M (2014) Nickel oxide nanoparticles prepared by gelatin and their application toward the oxygen evolution reaction. J Solid State Electrochem 18(3):747–753

    Article  CAS  Google Scholar 

  13. Elumalai P, Zosel J, Guth U, Miura N (2009) NO2 sensing properties of YSZ-based sensor using NiO and Cr-doped NiO sensing electrodes at high temperature. Ionics 15(4):405–411

    Article  CAS  Google Scholar 

  14. Wu Z, Jiang L, Zhu Y, Xu C, Ye Y, Wang X (2012) Synthesis of mesoporous NiO nanosheet and its application on mercury (II) sensor. J Solid State Electrochem 16(10):3171–3177

    Article  CAS  Google Scholar 

  15. Wang D, Wang Q, Wang T (2013) Controlled synthesis of porous nickel oxide nanostructures and their electrochemical capacitive behaviors. Ionics 19(3):559–570

    Article  Google Scholar 

  16. Ding Y, Liu Y, Parisi J, Zhang L, Lei Y (2011) A novel NiO–Au hybrid nanobelts based sensor for sensitive and selective glucose detection. Biosens Bioelectron 28(1):393–398

    Article  CAS  Google Scholar 

  17. Park H, Seo Yoon H, Patil U, Anoop R, Lee J, Lim J, Lee W, Chan Jun S (2014) Radio frequency based label-free detection of glucose. Biosens Bioelectron 54:141–145

    Article  CAS  Google Scholar 

  18. Meng L, Jin J, Yang G, Lu T, Zhang H, Cai C (2009) Nonenzymatic electrochemical detection of glucose based on palladium–single-walled carbon nanotube hybrid nanostructures. Anal Chem 81(17):7271–7280

    Article  CAS  Google Scholar 

  19. Wang J (2007) Electrochemical glucose biosensors. Chem Rev 108(2):814–825

    Article  Google Scholar 

  20. Sljukic B, Banks CE, Salter C, Crossley A, Compton RG (2006) Electrochemically polymerised composites of multi-walled carbon nanotubes and poly(vinylferrocene) and their use as modified electrodes: application to glucose sensing. Anly 131(5):670–677

    Article  CAS  Google Scholar 

  21. Song C, Pehrsson PE, Zhao W (2006) Optical enzymatic detection of glucose based on hydrogen peroxide-sensitive HiPco carbon nanotubes. J Mater Res 21(11):2817–2823

    Article  CAS  Google Scholar 

  22. Barone PW, Parker RS, Strano MS (2005) In Vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages. Anal Chem 77(23):7556–7562

    Article  CAS  Google Scholar 

  23. Spanner G, Nießner R (1996) New concept for the non-invasive determination of physiological glucose concentrations using modulated laser diodes. Fresenius J Anal Chem 354(3):306–310

    CAS  Google Scholar 

  24. Shen XW, Huang CZ, Li YF (2007) Localized surface plasmon resonance sensing detection of glucose in the serum samples of diabetes sufferers based on the redox reaction of chlorauric acid. Talanta 72(4):1432–1437

    Article  CAS  Google Scholar 

  25. Cheng Z, Wang E, Yang X (2001) Capacitive detection of glucose using molecularly imprinted polymers. Biosens Bioelectron 16(3):179–185

    Article  CAS  Google Scholar 

  26. Forster RJ, Hogan CF (2000) Electrochemiluminescent metallopolymer coatings: combined light and current detection in flow injection analysis. Anal Chem 72(22):5576–5582

    Article  CAS  Google Scholar 

  27. Morikawa MA, Kimizuka N, Yoshihara M, Endo T (2002) New colorimetric detection of glucose by means of electron-accepting indicators: ligand substitution of [Fe(acac)3-n(phen)n]n + complexes triggered by electron transfer from glucose oxidase. Chemistry 8(24):5580–5584

    Article  CAS  Google Scholar 

  28. Liu X, Li Y, Liu X, Zeng X, Kong B, Luo S, Wei W (2012) Simple sensor for simultaneous determination of dihydroxybenzene isomers. J Solid State Electrochem 16(3):883–889

    Article  CAS  Google Scholar 

  29. Wu C, Wang X, Ju B, Bai Y, Jiang L, Wu H, Zhao Q, Gao J, Wang X, Yi L (2013) Supercapacitive behaviors of the nitrogen-enriched activated mesocarbon microbead in aqueous electrolytes. J Solid State Electrochem 17(6):1693–1700

    Article  CAS  Google Scholar 

  30. Luo L, Li F, Zhu L, Ding Y, Zhang Z, Deng D, Lu B (2013) Nonenzymatic glucose sensor based on nickel(II)oxide/ordered mesoporous carbon modified glassy carbon electrode. Colloid Surface B 102:307–311

    Article  CAS  Google Scholar 

  31. Katakis I, Domínguez E (1995) Characterization and stabilization of enzyme biosensors. TrAC Trends Anal Chem 14(7):310–319

    Article  CAS  Google Scholar 

  32. Adzic RR, Hsiao MW, Yeager EB (1989) Electrochemical oxidation of glucose on single crystal gold surfaces. J Electroanal Chem IntElectrochem 260(2):475–485

    Article  CAS  Google Scholar 

  33. Nagy L, Nagy G, Hajós P (2001) Copper electrode based amperometric detector cell for sugar and organic acid measurements. Sensor Actuat B: Chem 76(1–3):494–499

    Article  CAS  Google Scholar 

  34. Sun Y, Buck H, Mallouk TE (2001) Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors. Anal Chem 73(7):1599–1604

    Article  CAS  Google Scholar 

  35. Guascito MR, Chirizzi D, Malitesta C, Siciliano M, Siciliano T, Tepore A (2012) Amperometric non-enzymatic bimetallic glucose sensor based on platinum tellurium microtubes modified electrode. Electrochem Commun 22:45–48

    Article  CAS  Google Scholar 

  36. Yuan JH, Wang K, Xia XH (2005) Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv Funct Mater 15(5):803–809

    Article  CAS  Google Scholar 

  37. Kang X, Mai Z, Zou X, Cai P, Mo J (2008) Glucose biosensors based on platinum nanoparticles-deposited carbon nanotubes in sol-gel chitosan/silica hybrid. Talanta 74(4):879–886

    Article  CAS  Google Scholar 

  38. Li L-H, Zhang W-D, Ye J-S (2008) Electrocatalytic oxidation of glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroanalysis 20(20):2212–2216

    Article  CAS  Google Scholar 

  39. Miao F, Tao B, Sun L, Liu T, You J, Wang L, Chu PK (2009) Amperometric glucose sensor based on 3D ordered nickel–palladium nanomaterial supported by silicon MCP array. Sensor Actuat B: Chem 141(1):338–342

    Article  CAS  Google Scholar 

  40. Wang J, Thomas DF, Chen A (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal Chem 80(4):997–1004

    Article  CAS  Google Scholar 

  41. Bai Y, Sun Y, Sun C (2008) Pt-Pb nanowire array electrode for enzyme-free glucose detection. Biosens Bioelectron 24(4):579–585

    Article  CAS  Google Scholar 

  42. Nathan T, Aziz A, Noor AF, Prabaharan SRS (2008) Nanostructured NiO for electrochemical capacitors: synthesis and electrochemical properties. J Solid State Electrochem 12(7–8):1003–1009

    Article  CAS  Google Scholar 

  43. Liu S, Yu B, Zhang T (2013) A novel non-enzymatic glucose sensor based on NiO hollow spheres. Electrochim Acta 102:104–107

    Article  CAS  Google Scholar 

  44. Chigane M, Ishikawa M (1998) XRD and XPS characterization of electrochromic nickel oxide thin films prepared by electrolysis-chemical deposition. J Chem Soc Faraday Trans 94(24):3665–3670

    Article  CAS  Google Scholar 

  45. Grosvenor AP, Biesinger MC, Smart RSC, McIntyre NS (2006) New interpretations of XPS spectra of nickel metal and oxides. Surf Sci 600(9):1771–1779

    Article  CAS  Google Scholar 

  46. Kalwar NH, Sirajuddin SSTH, Abro MI, Tagar ZA, Hassan SS, Junejo Y, Khattak MI (2011) Synthesis of l-methionine stabilized nickel nanowires and their application for catalytic oxidative transfer hydrogenation of isopropanol. Appl Catal, A 400(1–2):215–220

    Article  CAS  Google Scholar 

  47. Krchova T, Kotek J, Jirak D, Havlickova J, Cisarova I, Hermann P (2013) Lanthanide(iii) complexes of aminoethyl-DO3A as PARACEST contrast agents based on decoordination of the weakly bound amino group. Dalton Trans 42(44):15735–15747

    Article  CAS  Google Scholar 

  48. Li X, Hu A, Jiang J, Ding R, Liu J, Huang X (2011) Preparation of nickel oxide and carbon nanosheet array and its application in glucose sensing. J Solid State Chem 184(10):2738–2743

    Article  CAS  Google Scholar 

  49. Lu W, Qin X, Asiri AM, Al-Youbi AO, Sun X (2013) Facile synthesis of novel Ni(ii)-based metal-organic coordination polymer nanoparticle/reduced graphene oxide nanocomposites and their application for highly sensitive and selective nonenzymatic glucose sensing. Anly 138(2):429–433

    Article  CAS  Google Scholar 

  50. Lu W, Qin X, Asiri AM, Al-Youbi AO, Sun X (2013) Ni foam: a novel three-dimensional porous sensing platform for sensitive and selective nonenzymatic glucose detection. Anly 138(2):417–420

    Article  CAS  Google Scholar 

  51. Jeong H, Kim J (2012) Electrochemical oxidation of glucose at nanoporous black gold surfaces in the presence of high concentration of chloride ions and application to amperometric detection. Electrochim Acta 80:383–389

    Article  CAS  Google Scholar 

  52. Pasta M, La Mantia F, Cui Y (2010) A new approach to glucose sensing at gold electrodes. Electrochem Commun 12(10):1407–1410

    Article  CAS  Google Scholar 

  53. Seo B, Kim J (2010) Electrooxidation of glucose at nanoporous gold surfaces: structure dependent electrocatalysis and its application to amperometric detection. Electroanalysis 22(9):939–945

    Article  CAS  Google Scholar 

  54. Hsiao MW, Adzic RR, Yeager EB (1992) The effects of adsorbed anions on the oxidation of D-glucose on gold single crystal electrodes. Electrochim Acta 37(2):357–363

    Article  CAS  Google Scholar 

  55. Kamath VN, Lal H (1970) Halide adsorption and the anodic oxidation of chemisorbed methanol on platinum. J Electroanal Chem Interfacial Electrochem 24(1):125–135

    Article  CAS  Google Scholar 

  56. Luo S, Su F, Liu C, Li J, Liu R, Xiao Y, Li Y, Liu X, Cai Q (2011) A new method for fabricating a CuO/TiO2 nanotube arrays electrode and its application as a sensitive nonenzymatic glucose sensor. Talanta 86:157–163

    Article  CAS  Google Scholar 

  57. Liu Y, Teng H, Hou H, You T (2009) Nonenzymatic glucose sensor based on renewable electrospun Ni nanoparticle-loaded carbon nanofiber paste electrode. Biosens Bioelectron 24(11):3329–3334

    Article  CAS  Google Scholar 

  58. Shamsipur M, Najafi M, Hosseini M-RM (2010) Highly improved electrooxidation of glucose at a nickel(II) oxide/multi-walled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 77(2):120–124

    Article  CAS  Google Scholar 

  59. Lv W, Jin F-M, Guo Q, Yang Q-H, Kang F (2012) DNA-dispersed graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor. Electrochim Acta 73:129–135

    Article  CAS  Google Scholar 

  60. Zhong Y, Li Y, Li S, Feng S, Zhang Y (2014) Nonenzymatic hydrogen peroxide biosensor based on four different morphologies of cuprous oxide nanocrystals. RSC Adv 4(76):40638–40642

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Higher Education Commission, Islamabad, Pakistan, for provision of financial assistance during this research and the National Centre of Excellence in Analytical Chemistry, Jamshoro, for their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razium Ali Soomro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soomro, R.A., Ibupoto, Z.H., Sirajuddin et al. Controlled synthesis and electrochemical application of skein-shaped NiO nanostructures. J Solid State Electrochem 19, 913–922 (2015). https://doi.org/10.1007/s10008-014-2700-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2700-z

Keywords

Navigation