Skip to main content

Advertisement

Log in

Growth of NiS/graphene nanocomposites for enhanced performance of dye sensitized solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

One dimensional (1D) NiS/2D graphene nanocomposites were synthesized via a simple, facile, and low-temperature hydrothermal method and used as cocatalysts for triiodide reduction in dye sensitized solar cell (DSSCs). The influence of the graphene content on the microstructure and morphology of the NiS/graphene hybrid was investigated. Catalytic activities of the composite catalysts for reduction of I 3 were characterized by electrochemical impedance spectroscopy and cyclic voltammetry. It was found that the content of graphene played an important role in the structure and the quality of the formed NiS/graphene hybrid counter-electrode (CE) and the photovoltaic performance of the resultant DSSC as well. The mechanisms for the NiS/graphene hybrid formation and electrocatalytic performance improvement are discussed. The NiS/graphene hybrid CE exhibits the best catalytic property when the mass ratio of graphene to NiS is 0.4 %. The DSSC with the optimized NiS/graphene hybrid CE produces an energy conversion efficiency of 8.26 %, which is significantly higher than that of the device with pure graphene or bare NiS CE, and also superior to that (8.12 %) for the DSSC with the Pt CE under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) Nature 353:737–740

    Article  Google Scholar 

  2. Kay A, Grätzel M (1996) Sol Energ Mater Sol Cell 44:99–117

    Article  CAS  Google Scholar 

  3. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BF, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Nature Chem 6:242–247

    Article  CAS  Google Scholar 

  4. Zhang D, Li X, Li H, Chen S, Sun Z, Yin X, Huang S (2011) Carbon 49:5382–5388

    Article  CAS  Google Scholar 

  5. Ahmad S, Yum JH, Xianxi Z, Grätzel M, Butt HJ, Nazeeruddin MK (2010) J Mater Chem 20:1654–1658

    Article  CAS  Google Scholar 

  6. Wang M, Anghel AM, Marsan BT, Cevey Ha NL, Pootrakulchote N, Zakeeruddin SM, Grätzel M (2009) J Am Chem Soc 131:15976–15977

    Article  CAS  Google Scholar 

  7. Xin X, He M, Han W, Jung J, Lin Z (2011) Angew Chem Int Edit 50:11739–11742

    Article  CAS  Google Scholar 

  8. Lin JY, Liao JH, Chou SW (2011) Electrochim Acta 56:8818–8826

    Article  CAS  Google Scholar 

  9. Wu M, Wang Y, Lin X, Yu N, Wang L, Wang L, Hagfeldt A, Ma T (2011) Phys Chem Chem Phys 13:19298–19301

    Article  CAS  Google Scholar 

  10. Tachan Z, Shalom M, Hod I, Rühle S, Tirosh S, Zaban A (2011) J Phys Chem C 115:6162–6166

    Article  CAS  Google Scholar 

  11. Mulmudi HK, Batabyal SK, Rao M, Prabhakar RR, Mathews N, Lam YM, Mhaisalkar SG (2011) Phys Chem Chem Phys 13:19307–19309

    Article  CAS  Google Scholar 

  12. Mahmood N, Zhang C, Hou Y (2013) Small 9:1321–1328

    Article  CAS  Google Scholar 

  13. Zhu T, Wang Z, Ding S, Chen JS, Lou XWD (2011) RSC Adv 1:397–400

    Article  CAS  Google Scholar 

  14. Vandenborre H, Vermeiren P, Leysen R (1984) Electrochim Acta 29:297–301

    Article  CAS  Google Scholar 

  15. Lai CH, Huang KW, Cheng JH, Lee CY, Lee WF, Huang CT, Hwang BJ, Chen LJ (2009) J Mater Chem 19:7277–7283

    Article  CAS  Google Scholar 

  16. Sun H, Qin D, Huang S, Guo X, Li D, Luo Y, Meng Q (2011) Energy Environ Sci 4:2630–2637

    Article  CAS  Google Scholar 

  17. SeokáChi W, WooáHan J, KyuáRoh D, HakáKim J (2012) Chem Commun 48:9501–9503

    Article  Google Scholar 

  18. Kan J, Wang Y (2013) Sci Rep 3:3502

    Google Scholar 

  19. Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Nano Energ 2:213–234

    Article  CAS  Google Scholar 

  20. Bajpai R, Roy S, Kumar P, Bajpai P, Kulshrestha N, Rafiee J, Koratkar N, Misra D (2011) ACS Appl Mater Interfaces 3:3884–3889

    Article  CAS  Google Scholar 

  21. Li Z, Gong F, Zhou G, Wang ZS (2013) J Phys Chem C 117:6561–6566

    Article  CAS  Google Scholar 

  22. Chen N, Zhang W, Yu W, Qian Y (2002) Mater Lett 55:230–233

    Article  CAS  Google Scholar 

  23. Lü X, Mou X, Wu J, Zhang D, Zhang L, Huang F, Xu F, Huang S (2010) Adv Funct Mater 20:509–515

    Article  Google Scholar 

  24. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, CarO R, Prud’homme RK, Aksay IA (2007) Chem Mater 19:4396–4404

    Article  CAS  Google Scholar 

  25. Subrahmanyam KS, Vivekchand SRC, Govindaraj A, Rao CNR (2008) J Mater Chem 18:1517–1523

    Article  CAS  Google Scholar 

  26. Wang H, Liang Y, Li Y, Dai H (2011) Angew Chem Int Edit 50:10969–10972

    Article  CAS  Google Scholar 

  27. Dou Y, Li G, Song J, Gao X (2012) Phys Chem Chem Phys 14:1339–1342

    Article  CAS  Google Scholar 

  28. Thomas S, Deepak TG, Anjusree GS, Arun TA, Nair SV, Nair AS (2014) J Mater Chem A 2:4474–4490

    Article  CAS  Google Scholar 

  29. Huang Z, Liu X, Li K, Li D, Luo Y, Li H, Song W, Chen L, Meng Q (2007) Electrochem Commun 9:596–598

    Article  CAS  Google Scholar 

  30. Wu M, Lin X, Hagfeldt A, Ma T (2011) Chem Commun 47:4535–4537

    Article  CAS  Google Scholar 

  31. Lai Y, Lin C, Chen J, Wang C, Huang K, Liu K, Lin K, Lin J, Ho K (2010) Sol Energ Mater Sol Cell 94:668–674

    Article  CAS  Google Scholar 

  32. Zhu G, Wang X, Li H, Pan L, Sun H, Liu X, Lv T, Sun Z (2012) Chem Commun 48:958–960

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 11274119, 61275038) and Large Instruments Open Foundation of East China Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumei Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Cheng, R., Luo, Y. et al. Growth of NiS/graphene nanocomposites for enhanced performance of dye sensitized solar cells. J Solid State Electrochem 19, 1045–1052 (2015). https://doi.org/10.1007/s10008-014-2704-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2704-8

Keywords

Navigation