Skip to main content
Log in

Effect of indium alloying with lead together with the addition of phosphoric acid in electrolyte to improve lead-acid battery performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical and corrosion behavior of Pb and Pb-In alloys in both phosphoric and sulfuric acid solutions containing various concentrations of phosphoric acid (0.05 to 0.20 M) at different temperatures was studied. Tafel plot and electrochemical impedance spectroscopy (EIS) techniques were used to obtain the experimental data, and the corrosion products formed on the surface were characterized by scanning electron microscopy (SEM). The results of both Tafel plot extrapolation and impedance measurements showed the same trend. Minor indium (0.5 %) alloying with lead significantly reduced corrosion rate in pure phosphoric acid solution. However, opposite behavior arises in the case of alloys containing indium more than 0.5 %, that is, the corrosion is higher than that of lead and alloy I. The corrosion current density decreases in both Pb and alloy I (0.5 %) in 4 M sulfuric acid with increasing the concentration of phosphoric acid up to 0.1 M, and then starts to increase relatively with increasing the additive concentration up to 0.2 M (but still lower than that in pure H2SO4). This exhibits that the higher concentration (0.2 M) of H3PO4 is less inhibitive of alloy I corrosion in H2SO4 solution. However, addition of phosphoric acid in various concentrations to sulfuric acid has little influence to inhibit the corrosion of alloys containing higher indium content (1 to 15 %). SEM photographs showed that the presence of indium as a minor alloying element retards the formation of PbSO4, but the formation of β-PbO2 enhances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Garche J, Doring H, Wiesener K (1991) J Power Sources 33:213–220

    Article  CAS  Google Scholar 

  2. Visscher W (1976/1977) J Power Sources 1:257-266

  3. Voss E (1988) J Power Sources 24:171–184

    Article  CAS  Google Scholar 

  4. Chatelut M, Chah-Bouzziri S, Vittori O, Benayada A (2000) J Solid State Electrochem 4:435–443

    Article  CAS  Google Scholar 

  5. Meissner E (1997) J Power Sources 67:135–150

    Article  CAS  Google Scholar 

  6. Paleska I, Pruszkowska-Drachal R, Kotowski J, Dziudzi A, Milewski JD, Kopczyk M, Czerwinski A (2003) J Power Sources 113:308–317

    Article  CAS  Google Scholar 

  7. Bullock KR, McClelland DH (1977) J Electrochem Soc 124:1478–1482

    Article  CAS  Google Scholar 

  8. Bullock KR (1979) J Electrochem Soc 126:360–365

    Article  CAS  Google Scholar 

  9. Bullock KR (1979) J Electrochem Soc 126:1848–1853

    Article  CAS  Google Scholar 

  10. Doring H, Wiesener K, Garche J, Fischer W (1992) J Power Sources 38:261–272

    Article  Google Scholar 

  11. Venugopalan S (1993) J Power Sources 46:1

    Article  CAS  Google Scholar 

  12. Sternberg S, Branzoi V, Apateanu L (1990) J Power Sources 30:177–183

    Article  CAS  Google Scholar 

  13. Saminathan K, Jayaprakash N, Rajeswari B, Vasudevan T (2006) J Power Sources 60:1410–1413

    Article  Google Scholar 

  14. El-Sayed A, Shaker AM, Gad El-Kareem H (2003) Bull Chem Soc Jpn 76:1527–1535

    Article  Google Scholar 

  15. Abd El-Rehim SS, Hassan HH, Mohamed NF (2004) Corros Sci 46:1071–1082

    Article  CAS  Google Scholar 

  16. Abdel Aal MS, Radwan S, El- Sayed (1983) Br Corros J 18:102–106

    Article  CAS  Google Scholar 

  17. Tremont R, De Jasus-Cardona H, Garcia-Orozco J, Castro RJ, Cabcera CR (2000) J Appl Electrochem 30:737–743

    Article  CAS  Google Scholar 

  18. Schultze JW, Wippermann K (1987) Electrochim Acta 32:823–831

    Article  CAS  Google Scholar 

  19. Clearly HJ, Greene ND (1967) Corros Sci 7:821–831

    Article  Google Scholar 

  20. Li S, Chem HY, Tang MC, Wei WW, Xia ZW, Wu YM, Li WS, Jiang X (2006) J Power Sources 158:914–919

    Article  CAS  Google Scholar 

  21. Andersson BO, Ojefors L (1976) J Electrochem Soc 123:824–828

    Article  CAS  Google Scholar 

  22. Mohran HS, El-Sayed A, Abd El-lateef HM (2009) J Solid State Electrochem 13:1147–1155

    Article  CAS  Google Scholar 

  23. Munoz AG, Saidman SB, Bessone JB (2002) Corros Sci 44:2171–2182

    Article  CAS  Google Scholar 

  24. Abdul Azim AA, Sanad SH (1973) Corros Sci 13:861–880

    Article  Google Scholar 

  25. Ŝeruga M, Hasenay D (2001) J Appl Electrochem 31:961–967

    Article  Google Scholar 

  26. El-Sayed A, Shaker AM, Abd El-Lateef HM (2010) Corros Sci 52:72–81

    Article  CAS  Google Scholar 

  27. Venugopalan S (1993) J Power Sources 46:1–15

    Article  CAS  Google Scholar 

  28. Venugopalan S (1994) J Power Sources 48:371–384

    Article  CAS  Google Scholar 

  29. Abd El-Rahman HA, Gad-Allah AG, Salih SA, Abd El-Wahab AM http://www.raco.cat/index.php/afinidad/article/viewFile/273753/361898

  30. Dezhi L, Conway PP, Changqing L (2008) Corros Sci 50:995–1004

    Article  Google Scholar 

  31. Mouanga M, Beroct P (2010) Corros Sci 52:3993–4000

    Article  CAS  Google Scholar 

  32. Kalinauskas P, Valsiunas I, Samuleviciene M, Juceliunas E (2001) Corros Sci 43:2083–2092

    Article  CAS  Google Scholar 

  33. Sere PR, Culcasi JD, Elsner CI, Sarli ARD (1999) Surf Coat Technol 122:143–149

    Article  CAS  Google Scholar 

  34. Barcia OE, Mattos OR, Pebere N, Tribollet B (1993) J Electrochem Soc 140:2825–2832

    Article  CAS  Google Scholar 

  35. Deslouis C, Tribollet B, Mengoli G, Musiani M (1988) J Appl Electrochem 18:374–383

    Article  CAS  Google Scholar 

  36. Macdonal JR, Impedance spectroscopy: Emphasizing solid materials and systems 1987, by John wiley & Sons. Inc. Chapter 1, page 22

  37. El-Sayed A, Mohran HS, Abd El-Lateef HM (2012) Metall Mater Trans A 43:619–632

    Article  CAS  Google Scholar 

  38. El-Sayed A, Mohran HS, Abd El-Lateef HM (2011) J Power Sources 196:6573–6582

    Article  CAS  Google Scholar 

  39. El-Sayed A (1997) J Appl Electrochem 27:193–200

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Rahman El-Sayed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sayed, AR., Mohran, H.S., Abd El-Lateef, H.M. et al. Effect of indium alloying with lead together with the addition of phosphoric acid in electrolyte to improve lead-acid battery performance. J Solid State Electrochem 19, 1463–1478 (2015). https://doi.org/10.1007/s10008-015-2765-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2765-3

Keywords

Navigation