Skip to main content
Log in

Structure and electrochemical properties of polystyrene/CNT nanocomposites

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The realization of the outstanding properties of CNTs (carbon nanotubes) is constrained by their inherent tendency to agglomerate. Emulsion polymerization was used for synthesizing poly(styrene)/CNT nanocomposites with functionalized CNTs. Chain transfer agents (CTAs) were incorporated to control polymer molar mass and end-use properties. Data from electrical impedance spectroscopy (EIS) at variable frequencies were analyzed to characterize and elucidate the electrical characteristics of poly(styrene) (PS)/CNT nanocomposites. The incorporation of CNT in the polymer matrix even at modest concentrations enhanced the electrical properties of the non-conductive poly(styrene) significantly as revealed by EIS spectra. The use of CTA enabled modulation of polymer molar mass and variation in the electrical properties for PS/CNT relative to composites with no CTA. The electrical behavior of PS/CNT dispersion has been shown to depend both on the CNT concentration and molecular weight of the substrate. The equivalent electrical circuit (EEC) analyses with the corresponding system parameters enabled determination of relative CNT arrangements for different types of PS/CNT composites. TEM images confirmed the CNT positions within the composites and helped support interpretation of EIS/EEC data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dumitrescu L, Wilson NR, Macpherson JV (2007) Functionalizing single-walled carbon nanotube networks: effect on electrical and electrochemical properties. J Phys Chem 111:12944–12953

    Article  CAS  Google Scholar 

  2. Katz E, Willner I (2004) Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. ChemPhysChem 5:1084–1104

    Article  CAS  Google Scholar 

  3. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  CAS  Google Scholar 

  4. Olivé-Monllau R, Esplandiu MJ, Bartrolí J, Baeza M, Céspedes F (2010) Strategies for the optimization of carbon nanotube/polymer ratio in composite materials: applications as voltammetric sensors. Sensors Actuators B 146:353–360

    Article  Google Scholar 

  5. Philip B, Abraham JK, Chandrasekhar A, Varadan VK (2003) Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Mater Struct 12:935–939

    Article  CAS  Google Scholar 

  6. Frankland SJV, Caglar A, Brenner DW, Griebel M (2002) Molecular simulation of the influence of chemical cross-link on the shear strength of CNT-polymer interface. J Phys Chem 106:3046–3048

    Article  CAS  Google Scholar 

  7. Yu J, Grossiord N, Koning CE, Loos J (2007) Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45:618–623

    Article  CAS  Google Scholar 

  8. Wang Y, Iqbal Z, Mitra S (2005) Rapidly functionalized, water-dispersed carbon nanotubes at high concentration. J Am Chem Soc 128:95–99

    Article  Google Scholar 

  9. Khan MU, Gomes VG, Altarawneh IS (2010) Synthesizing polystyrene/carbon nanotube nanocomposites by emulsion polymerization with non-covalent and covalent functionalization. Carbon 48:2925–2933

    Article  CAS  Google Scholar 

  10. Altarawneh I, Gomes VG, Srour M (2009) Polymer chain extension in semibatch emulsion polymerization with RAFT-based transfer agent: the influence of reaction conditions on polymerization rate and product properties. J Appl Polym Sci 114(4):2356–2372

    Article  CAS  Google Scholar 

  11. O’Donnell KJ, Eric W (2010) Reversible addition–fragmentation chain transfer in microemulsions: effect of chain transfer agent aqueous solubility. Macromolecules 43(4):1730–1738

    Article  Google Scholar 

  12. Akat H, Atilla MT, Filip DP, Yusuf Y (2008) Synthesis and characterization of polymer/clay nanocomposites by intercalated chain transfer agent. Eur Polym J 44:1949–1954

    Article  CAS  Google Scholar 

  13. Volkov AA, Prokhorov AS (2003) Broadband dielectric spectroscopy of solids. Radiophys Quantum Electron 46:657–665

    Article  Google Scholar 

  14. Cai M, Park SM (1996) Oxidation of zinc in alkaline solutions studied by electrochemical impedance spectroscopy. J Electrochem Soc 143:3895–902

    Article  CAS  Google Scholar 

  15. Sherif EM, Park SM (2006) Effects of 1,4-naphthoquinone on aluminum corrosion in 0.50 M sodium chloride solutions. Electrochima Acta 51:1313–21

    Article  CAS  Google Scholar 

  16. Scully JR (2000) Polarization resistance method for determination of instantaneous corrosion rates. Corrosion 56:199–218

    Article  CAS  Google Scholar 

  17. Mansfeld F (1995) Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings. J Appl Electrochem 25:187–202

    Google Scholar 

  18. Danzer MA, Hofer EP (2009) Analysis of the electrochemical behaviour of polymer electrolyte fuel cells using simple impedance models. J Power Sources 190:25–33

    Article  CAS  Google Scholar 

  19. Vu QT, Pavlik M, Hebestreit N, Rammelt U, Plieth W, Pfleger J (2005) Nanocomposites based on titanium dioxide and polythiophene: structure and properties. React Funct Polym 65:69–77

    Article  CAS  Google Scholar 

  20. Coster HGL, Chilcott TC, Coster ACF (1996) Impedance spectroscopy of interfaces, membranes and ultrastructures. Bioelectroch Bioener 40:79–98

    Article  CAS  Google Scholar 

  21. Gojny FH, Wichmann MHG, Köpke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-composites—enhanced stiffness and fracture toughness at low nanotube contents. Compos Sci Technol 64:2363–71

    Article  CAS  Google Scholar 

  22. Song PC, Liu CH, Fan SS (2006) Improving the thermal conductivity of nanocomposites by increasing the length efficiency of loading carbon nanotubes. Appl Phys Lett 88:153111-(1–3)

  23. Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites—a review. Mater Sci Eng A 393:1–11

    Article  Google Scholar 

  24. Benyahia B, Latifi MA, Fonteix C, Pla F, Nacef S (2010) Emulsion copolymerization of styrene and butyl acrylate in the presence of a chain transfer agent. Part 1: modelling and experimentation of batch and fedbatch processes. Chem Eng Sci 65:850–869

    Article  CAS  Google Scholar 

  25. Gomes VG, Tjiam C (2014) Optimal operating strategies for emulsion polymerization with chain transfer agent. Ind Eng Chem Res 53:7526–7537

    Article  Google Scholar 

  26. Mamunya Y (2011) Carbon nanotubes as conductive filler in segregated polymer composites—electrical properties. In Yellampalli S (ed) Carbon Nanotubes - Polymer Nanocomposites, Publisher:InTech. doi:10.5772/18878

  27. Abouzari MRS, Berkemeier F, Schmitz G, Wilmer D (2009) On the physical interpretation of constant phase elements. Solid State Ionics 180:922–927

    Article  Google Scholar 

  28. West AR, Sinclair DC, Hirose N (1997) Characterization of electrical materials, especially ferroelectrics, by impedance spectroscopy. J Electroceram 1:65–71

    Article  CAS  Google Scholar 

  29. Chilcott TC, Wong ELS, Coster H, James M (2009) Ionic double layer of atomically flat gold formed on mica templates. Electrochim Acta 54:3766–3774

    Article  CAS  Google Scholar 

  30. Abdollahi Z, Ghasemi S, Darestani M, Gomes VG (2014) Characterizing colloidal behavior of non-ionic emulsifiers in non-polar solvents using electrical impedance spectroscopy. Colloid Polym Sci 292:2695–2705

    Article  CAS  Google Scholar 

  31. Ghasemi S, Abdollahi Z, Darestani M, Gomes VG (2015) Online monitoring of emulsion polymerization using electrical impedance spectroscopy. Polym Int 64:66–75

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the Australian Research Council and fruitful discussions with Prof. Hans Coster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent G. Gomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.U., Darestani, M.T. & Gomes, V.G. Structure and electrochemical properties of polystyrene/CNT nanocomposites. J Solid State Electrochem 19, 3145–3156 (2015). https://doi.org/10.1007/s10008-015-2943-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2943-3

Keywords

Navigation