Skip to main content
Log in

Electrospun porous carbon nanofibers as lithium ion battery anodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Porous carbon nanofibers were fabricated by electrospinning in a precursor solution containing polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), and N,N-dimethylformamide. During thermal treatment, PMMA decomposition caused nanofibers to transform from a solid to a porous structure. Removal of PMMA also decreased the fiber diameter and increased the pore volume of the carbon nanofibers, resulting in a substantial increase in specific surface area. We used these web-type fiber films directly without a binder as an anode for lithium ion batteries. The electrochemical performance of these 5:5 PAN/PMMA-derived carbon nanofibers exhibited a discharge capacity of 446 mAh/g under a current density of 150 mA/g, which was approximately two times that of the neat PAN-derived carbon nanofibers. Additionally, the discharge capacity retention of the 5:5 PAN/PMMA-derived carbon nanofibers was nearly the same as that of the neat PAN-derived carbon nanofibers, indicating favorable cycle stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jana M, Sil A, Ray S (2014) Morphology of carbon nanostructures and their electrochemical performance for lithium ion battery. J Phys Chem Solids 75:60–67

    Article  CAS  Google Scholar 

  2. Liu XM, Huang ZD, Oh SW, Zhang B, Ma PC, Yuen M, Kim JK (2012) Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review. Compos Sci Technol 72:121–144

    Article  CAS  Google Scholar 

  3. Yoo EJ, Kim J, Hosono E, Zhou HS, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277–2282

    Article  CAS  Google Scholar 

  4. Sun Y, Wu Q, Shi G (2011) Graphene based new energy materials. Energ Environ Sci 4:1113–1132

    Article  CAS  Google Scholar 

  5. Wang G, Shen X, Yao J, Park J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47:2049–2053

    Article  CAS  Google Scholar 

  6. Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M (2006) Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv Funct Mater 16:2393–2397

    Article  CAS  Google Scholar 

  7. Ji L, Zhang X (2009) Fabrication of porous carbon nanofibers and their application as anode materials for rechargeable lithium-ion batteries. Nanotechnology 20:155705

    Article  Google Scholar 

  8. Khan WS, Asmatulu R, Rodriguez V, Ceylan M (2014) Enhancing thermal and ionic conductivities of electrospun PAN and PMMA nanofibers by graphene nanoflake additions for battery-separator applications. Int J Energy Res 38:2044–2051

    Article  CAS  Google Scholar 

  9. Peng YT, Lo CT (2015) Effect of microstructure and morphology of electrospun ultra-small carbon nanofibers on anode performances for lithium ion batteries. J Electrochem Soc 162:A1085–A1093

    Article  CAS  Google Scholar 

  10. Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS (2001) Vapor-grown carbon fibers (VGCFs)—basic properties and their battery applications. Carbon 39:1287–1297

    Article  CAS  Google Scholar 

  11. Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480

    Article  Google Scholar 

  12. Arshad SN, Naraghi M, Chasiotis I (2011) Strong carbon nanofibers from electrospun polyacrylonitrile. Carbon 49:1710–1719

    Article  CAS  Google Scholar 

  13. Khan WS, Asmatulu R, Ceylan M, Jabbarnia A (2013) Recent progress on conventional and non-conventional electrospinning processes. Fiber Polym 14:1235–1247

    Article  CAS  Google Scholar 

  14. Nuraje N, Khan WS, Lei Y, Ceylan M, Asmatulu R (2013) Superhydrophobic electrospun nanofibers. J Mater Chem 1:1929–1946

    Article  CAS  Google Scholar 

  15. Ji L, Zhang X (2009) Generation of activated carbon nanofibers from electrospun polyacrylonitrile-zinc chloride composites for use as anodes in lithium-ion batteries. Electrochem Commun 11:684–687

    Article  CAS  Google Scholar 

  16. Lee BS, Son SB, Park KM, Yu WR, Oh KH, Lee SH (2012) Anodic properties of hollow carbon nanofibers for Li-ion battery. J Power Sources 199:53–60

    Article  CAS  Google Scholar 

  17. Wang L, Yu Y, Chen PC, Chen CH (2008) Electrospun carbon-cobalt composite nanofiber as an anode material for lithium ion batteries. Scr Mater 58:405–408

    Article  CAS  Google Scholar 

  18. Yu Y, Gu L, Zhu C, Aken PA, Maier J (2009) Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. J Am Chem Soc 131:15984–15985

    Article  CAS  Google Scholar 

  19. Ji L, Lin Z, Medford AJ, Zhang X (2009) In-situ encapsulation of nickel particles in electrospun carbon nanofibers and the resultant electrochemical performance. Chem Eur J 15:10718–10722

    Article  CAS  Google Scholar 

  20. Ji L, Jung KH, Medford AJ, Zhang X (2009) Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization. J Mater Chem 19:4992–4997

    Article  CAS  Google Scholar 

  21. Choi HS, Lee JG, Lee HY, Kim SW, Park CR (2010) Effects of surrounding confinements of Si nanoparticles on Si-based anode performance for lithium ion batteries. Electrochim Acta 56:790–796

    Article  CAS  Google Scholar 

  22. Hwang TH, Lee YM, Kong BS, Seo JS, Choi JW (2012) Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes. Nano Lett 12:802–807

    Article  CAS  Google Scholar 

  23. Wu Y, Balakrishna R, Reddy MV, Nair AS, Chowdari BVR, Ramakrishna S (2012) Functional properties of electrospun NiO/RuO2 composite carbon nanofibers. J Alloy Compd 517:69–74

    Article  CAS  Google Scholar 

  24. Chaudhari S, Srinivasan M (2012) 1D hollow alpha-Fe2O3 electrospun nanofibers as high performance anode material for lithium ion batteries. J Mater Chem 22:23049–23056

    Article  CAS  Google Scholar 

  25. Kong J, Yee WA, Wei Y, Yang L, Ang JM, Phua SL, Wong SY, Zhou R, Dong Y, Li X, Lu X (2013) Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes. Nanoscale 5:2967–2973

    Article  CAS  Google Scholar 

  26. Ryu JH, Kim JW, Sung YE, Oh SM (2004) Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem Solid-State Lett 7:A306–A309

    Article  CAS  Google Scholar 

  27. Kasavajjula U, Wang CS, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163:1003–1039

    Article  CAS  Google Scholar 

  28. Ji LW, Medford AJ, Zhang XW (2009) Electrospun polyacrylonitrile/zinc chloride composite nanofibers and their response to hydrogen sulfide. Polymer 50:605–612

    Article  CAS  Google Scholar 

  29. Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 92:1421–1432

    Article  CAS  Google Scholar 

  30. Niu H, Zhang J, Xie Z, Wang X, Lin T (2011) Preparation, structure and supercapacitance of bonded carbon nanofiber electrode materials. Carbon 49:2380–2388

    Article  CAS  Google Scholar 

  31. Hsu YH, Lai CC, Ho CL, Lo CT (2014) Preparation of interconnected carbon nanofibers as electrodes for supercapacitors. Electrochim Acta 127:369–376

    Article  CAS  Google Scholar 

  32. Hong CK, Yang KS, Oh SH, Ahn JH, Cho BH, Nah C (2008) Effect of blend composition on the morphology development of electrospun fibers based on PAN/PMMA blends. Polym Int 57:1357–1362

    Article  CAS  Google Scholar 

  33. Goel SK, Beckman EJ (1994) Generation of microcellular polymeric foams using supercritical carbon-dioxide. 1. Effect of pressure and temperature on nucleation. Polym Eng Sci 34:1137–1147

    Article  CAS  Google Scholar 

  34. Sutasinpromprae J, Jitjaicham S, Nithitanakul M, Meechaisue C, Supaphol P (2006) Preparation and characterization of ultrafine electrospun polyacrylonitrile fibers and their subsequent pyrolysis to carbon fibers. Polym Int 55:825–833

    Article  CAS  Google Scholar 

  35. Xia K, Gao Q, Jiang J, Hu J (2008) Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46:1718–1726

    Article  CAS  Google Scholar 

  36. Fuertes AB, Lota G, Centeno TA, Frackowiak E (2005) Templated mesoporous carbons for supercapacitor application. Electrochim Acta 50:2799–2805

    Article  CAS  Google Scholar 

  37. Lee GJ, Pyun SI (2006) Effect of microcrystallite structures on electrochemical characteristics of mesoporous carbon electrodes for electric double-layer capacitors. Electrochim Acta 51:3029–3038

    Article  CAS  Google Scholar 

  38. Azaroff LV (1968) Elements of X-ray crystallography. McGraw-Hill, New York

    Google Scholar 

  39. Oya A, Marsh H (1982) Phenomena of catalytic graphitization. J Mater Sci 17:309–322

    Article  CAS  Google Scholar 

  40. Dresselhaus MS, Dresselhaus G, Pimenta MA, Eklund PC (1999) In: Pelletier MJ (ed) Analytical application of Raman spectroscopy. Blackwell, London

    Google Scholar 

  41. Wang C, Appleby AJ, Little FE (2002) Irreversible capacities of graphite anode for lithium-ion batteries. J Electroanal Chem 519:9–17

    Article  CAS  Google Scholar 

  42. Kumar PS, Sahay R, Aravindan V, Sundaramurthy J, Ling WC, Thavasi V, Mhaisalkar SG, Madhavi S, Ramakrishna S (2012) Free-standing electrospun carbon nanofibres—a high performance anode material for lithium-ion batteries. J Phys D: Appl Phys 45:265302

    Article  Google Scholar 

  43. Subramanian V, Zhu H, Wei B (2006) High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers. J Phys Chem B 110:7178–7183

    Article  CAS  Google Scholar 

  44. Kim JS, Park YT (2000) Characteristics of surface films formed at a mesocarbon microbead electrode in a Li-ion battery. J Power Sources 91:172–176

    Article  CAS  Google Scholar 

  45. Matsumura Y, Wang S, Kasuh T, Maeda T (1995) The dependence of reversible capacity of lithium ion rechargeable batteries on the crystal structure of carbon electrodes. Synth Met 71:1755–1756

    Article  CAS  Google Scholar 

  46. Wang S, Matsumura Y, Maeda T (1995) A model of the interaction between disordered carbon and lithium. Synth Met 71:1759–1760

    Article  CAS  Google Scholar 

  47. Flandrois S, Simon B (1999) Carbon materials for lithium-ion rechargeable batteries. Carbon 37:165–180

    Article  CAS  Google Scholar 

  48. Kaneko K, Imai J (1989) Adsorption of NO2 on activated carbon fibers. Carbon 27:954–955

    Article  CAS  Google Scholar 

  49. Kang KC, Kin SS, Choi JW, Kwon SH (2008) Sorption of Cu2+ and Cd2+ onto acid- and base-pretreated granular activated carbon and activated carbon fiber samples. J Ind Eng Chem 14:131–135

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Ministry of Science and Technology in Taiwan under Grant No. 102-2221-E-006-018-MY3 and the Technology Development Program for Academia No. 103-EC-17-A-08-S1-204 by Ministry of Economic Affairs in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chieh-Tsung Lo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, YT., Lo, CT. Electrospun porous carbon nanofibers as lithium ion battery anodes. J Solid State Electrochem 19, 3401–3410 (2015). https://doi.org/10.1007/s10008-015-2976-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2976-7

Keywords

Navigation