Skip to main content
Log in

Electrodeposition of three-dimensional Ni(OH)2 nanoflakes on partially crystallized activated carbon for high-performance supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Three-dimensional Ni(OH)2 nanoflakes were prepared via a facile and cost-effective electrodeposition method using commercial activated carbon (AC) as substrate. Nitric acid treatment (NT) and partial crystallization (PC) by metal nickel catalysis were applied for AC. The effects of the oxygen-containing functional groups and the degree of crystallization on the electrochemical performance of the electrode were investigated. The resulting Ni(OH)2/PC–NT–AC/nickel foam electrode exhibits distinct performance with a specific capacitance of 2971 F/g (scaled to the mass of active Ni(OH)2) at a current density of 6 A/g. A high capacitance of 1919 F/g was still achieved even at 40 A/g, which is much higher than Ni(OH)2/AC/nickel foam electrode and Ni(OH)2/NT–AC/nickel foam electrode. The excellent performance of Ni(OH)2/PC–NT–AC/nickel foam electrode can be attributed to the presence of large surface area and highly conductive PC–NT–AC network on nickel foam. This study presents an effective method to improve the dispersion and rate capability of Ni(OH)2 nanostructure electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lu Q, Chen JG, Xiao JQ (2013) Nanostructured electrodes for high-performance pseudocapacitors. Angew Chem 52:1882–1889

    Article  CAS  Google Scholar 

  2. Wang JG, Yang Y, Huang ZH, Kang F (2013) A high-performance asymmetric supercapacitor based on carbon and carbon-MnO2 nanofiber electrodes. Carbon 61:190–199

    Article  CAS  Google Scholar 

  3. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  4. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  5. Su DS, Schlögl R (2010) Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem 3:136–168

    Article  CAS  Google Scholar 

  6. Xie LJ, Wu JF, Chen CM, Zhang CM, Wan L, Wang JL, et al. (2013) A novel asymmetric supercapacitor with an activated carbon cathode and a reduced graphene oxide-cobalt oxide nanocomposite anode. J Power Sources 242:148–156

    Article  CAS  Google Scholar 

  7. Hu CC, Chen WC (2004) Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon-RuOx electrodes for supercapacitors. Electrochim Acta 49:3469–3477

    Article  CAS  Google Scholar 

  8. Jiang H, Zhao T, Ma J, Yan C, Li C (2011) Ultrafine manganese dioxide nanowire network for high-performance supercapacitors. Chem Commun 47:1264–1266

    Article  CAS  Google Scholar 

  9. Chen F, Zhou W, Yao H, Fan P, Yang J, Fei Z, et al. (2013) Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications. Green Chem 15:3057–3063

    Article  CAS  Google Scholar 

  10. Ji J, Zhang LL, Ji H, Li Y, Zhao X, Bai X, et al. (2013) Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7:6237–6243

    Article  CAS  Google Scholar 

  11. Xiong W, Pan X, Li Y, Chen X, Zhu Y, Yang M, et al. (2015) Hierarchical Co3O4@PPy CORE/shell nanowire arrays on nickel foam for electrochemical energy storage. Mater Lett 157:23–26

    Article  CAS  Google Scholar 

  12. Chen S, Duan J, Tang Y, Zhang QS (2013) Hybrid hydrogels of porous graphene and nickel hydroxide as advanced supercapacitor materials. Chem Eur J 19:7118–7124

    Article  CAS  Google Scholar 

  13. Nandy S, Maiti U, Ghosh C, Chattopadhyay K (2009) Enhanced p-type conductivity and band gap narrowing in heavily Al doped NiO thin films deposited by RF magnetron sputtering. J Phys Condens Matter 21:115804

    Article  CAS  Google Scholar 

  14. Kim JH, Kim CH, Yoon H, Youm JS, Jung YC, Bunker CE, et al. (2015) Rationally engineered surface properties of carbon nanofibers for the enhanced supercapacitive performance of binary metal oxide nanosheets. J Mater Chem A 3:19867–19872

    Article  CAS  Google Scholar 

  15. Qian T, Xu N, Zhou J, Yang T, Liu X, Shen X, et al. (2015) Interconnected three-dimensional V2O5/polypyrrole network nanostructures for high performance solid-state supercapacitors. J Mater Chem A 3:488–493

    Article  CAS  Google Scholar 

  16. Yan J, Fan Z, Sun W, et al. (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641

    Article  CAS  Google Scholar 

  17. Park JH, Park OO, Shin KH, Jin CS, Kim JH (2002) An electrochemical capacitor based on a Ni(OH)2/activated carbon composite electrode. Electrochem Solid-State Lett 5:H7–H10

    Article  CAS  Google Scholar 

  18. Tang Z, Tang CH, Gong H (2012) A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv Funct Mater 22:1272–1278

    Article  CAS  Google Scholar 

  19. Wang L, Li X, Guo T, Yan X, Tay BK (2014) Three-dimensional Ni(OH)2 nanoflakes/graphene/nickel foam electrode with high rate capability for supercapacitor applications. Int J Hydrog Energy 39:7876–7884

    Article  CAS  Google Scholar 

  20. Zhi M, Xiang C, Li J, Li M, Wu N (2013) Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88

    Article  CAS  Google Scholar 

  21. Li Y, Li Z, Shen PK (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25:2474–2480

    Article  CAS  Google Scholar 

  22. Ren TZ, Liu L, Zhang Y, Yuan ZY (2013) Nitric acid oxidation of ordered mesoporous carbons for use in electrochemical supercapacitors. J Solid State Electrochem 17:2223–2233

    Article  CAS  Google Scholar 

  23. Wang L, Guo Y, Zou B, Rong C, Ma X, Qu Y, et al. (2013) High surface area porous carbons prepared from hydrochars by phosphoric acid activation. Bioresour Technol 102:1947–1950

    Article  CAS  Google Scholar 

  24. Jiang L, Yan J, Hao L, Xue R, Sun G, Yi B (2013) High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors. Carbon 56:146–154

    Article  CAS  Google Scholar 

  25. Hao P, Zhao Z, Leng Y, Tian J, Sang Y, Boughton RI, et al. (2015) Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy 15:9–23

    Article  CAS  Google Scholar 

  26. El–Hendawy ANA (2003) Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 41:713–722

    Article  CAS  Google Scholar 

  27. Jiang H, Ma J, Li C (2012) Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv Mater 24:4197–4202

    Article  CAS  Google Scholar 

  28. Xia X, Tu J, Mai Y, Chen R, Wang X, Gu C, et al. (2011) Graphene sheet/porous NiO hybrid film for supercapacitor applications. Chem Eur J 17:10898–10905

    Article  CAS  Google Scholar 

  29. Ortiz M, Castro E, Real S (2014) Effect of cobalt electroless deposition on nickel hydroxide electrodes. Int J Hydrog Energy 39:6006–6012

    Article  CAS  Google Scholar 

  30. Hu CC, Chen JC, Chang KH (2013) Cathodic deposition of Ni(OH)2 and Co(OH)2 for asymmetric supercapacitors: importance of the electrochemical reversibility of redox couples. J Power Sources 221:128–133

    Article  CAS  Google Scholar 

  31. Shin HC, Dong J, Liu M (2003) Nanoporous structures prepared by an electrochemical deposition process. Adv Mater 15:1610–1614

    Article  CAS  Google Scholar 

  32. Wang H, Liang Y, Mirfakhrai T, et al. (2011) Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res 4:729–736

    Article  CAS  Google Scholar 

  33. Liu H, Zhang J, Xu D, Zhang B, Shi L, Huang L, et al. (2014) In situ formation of Ni(OH)2 nanoparticle on nitrogen-doped reduced graphene oxide nanosheet for high-performance supercapacitor electrode material. Appl Surf Sci 317:370–377

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful for the financial support of the National Natural Science Foundation of China NSFC (no. 51174144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, S., Cao, Q., Jin, L. et al. Electrodeposition of three-dimensional Ni(OH)2 nanoflakes on partially crystallized activated carbon for high-performance supercapacitors. J Solid State Electrochem 20, 619–628 (2016). https://doi.org/10.1007/s10008-015-3084-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3084-4

Keywords

Navigation