Skip to main content
Log in

Lignite-derived mesoporous N- and O-enriched carbon sheet: a low-cost promising electrode for high-performance electrochemical capacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In the work, we successfully fabricate mesoporous N- and O-enriched carbon (NOC) with adjustable porosity and specific surface area (SSA) by using low-cost lignite as a precursor coupled with general KOH or ZnCl2 activation for electrochemical capacitors (ECs). Physicochemical and electrochemical characterizations reveal that chemical activating agents influence significantly upon the specific morphology, pore structure, and electrochemical performance of the resultant products. Strikingly, KOH-activated NOC (NOC-K) sheets are endowed with high SSA of ∼1257 m2 g−1, large pore volume of 1.3 cm3 g−1, and optimized pore size of ∼3 nm, rendering its electrochemical capacitance superior to those of NOC and ZnCl2-activated NOC (NOC-Z) in 6 M KOH. Thanks to its rich mesoporosity coupled with large electroactive SSA and heteroatom doping (N of ∼4.8 at.% and O of ∼23.3 at.%) effect, the NOC-K electrode yields even better electrochemical behaviors in 1 M H2SO4 than those in 6 M KOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

NOC:

N- and O-enriched carbon

SSA:

Specific surface area

SED:

Specific energy density

ECs:

Electrochemical capacitors

NOC-Z:

ZnCl2-activated NOC

NOC-K:

KOH-activated NOC

CE:

Coulombic efficiency

EDLCs:

Electrochemical double-layer capacitors

SC:

Specific capacitance

BET:

Brunauer–Emmett–Teller

RT:

Room temperature

FESEM:

Field-emission scanning electron microscope

TEM:

Transmission electron microscope

HRTEM:

High-resolution transmission electron microscope

PSD:

Pore size distribution

BJH:

Barrett–Joyner–Halenda

XPS:

X-ray photoelectron spectroscopy

CV:

Cyclic voltammetry

CP:

Chronopotentiometry

EIS:

Electrochemical impedance spectroscopy

SCE:

Saturated calomel electrode

SL:

Shengli

SPD:

Specific power density

BE:

Binding energy

References

  1. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Science 313:1760–1763

    Article  CAS  Google Scholar 

  2. Zhang YZ, Wang Y, Cheng T, Lai WY, Pang H, Huang W (2015) Chem Soc Rev 44:5181–5199

    Article  CAS  Google Scholar 

  3. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications (Kluwer).

  4. Li HQ, Luo JY, Zhou XF, Yu CZ, Xia YY (2007) J Electrochem Soc 154:A731–A376

    Article  CAS  Google Scholar 

  5. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  6. Lee SW, Gallant BM, Byon HR, Hammond PT, Yang SH (2011) Energy Environ Sci 4:1972–1985

    Article  CAS  Google Scholar 

  7. Guo BK, Sun XG, Veith GM, Bi ZH, Mahurin SM, Liao C, Bridges C, Paranthaman MP, Dai S (2013) Adv Energy Mater 3:708–712

    Article  CAS  Google Scholar 

  8. Hou LR, Lian L, Li DK, Pang G, Li JF, Zhang XG, Xiong SL, Yuan CZ (2013) Carbon 64:141–149

    Article  CAS  Google Scholar 

  9. Xu B, Hou S, Cao GP, Wu F, Yang YS (2012) J Mater Chem 22:19088–19093

    Article  CAS  Google Scholar 

  10. Su FB, Poh CK, Chen JS, Xu GW, Wang D, Li Q, Lin JY, Lou XW (2011) Energy Environ Sci 4:717–724

    Article  CAS  Google Scholar 

  11. Hulicova-Jurcakova D, Seredych M, Lu GQ, Bandosz TJ (2009) Adv Funct Mater 19:438–447

    Article  CAS  Google Scholar 

  12. Béguin F, Szostak K, Lota G, Frackowiak E (2005) Adv Mater 17:2380–2384

    Article  Google Scholar 

  13. Qian WJ, Sun FX, Xu YH, Qiu LH, Liu CH, Wang SD, Yan F (2014) Energy Environ Sci 7:379–386

    Article  CAS  Google Scholar 

  14. Borchardt L, Oschatz M, Kaskel S (2014) Mater Horiz 1:157–168

    Article  CAS  Google Scholar 

  15. Zhou HS, Li DL, Hibino M, Honma I (2005) Angew Chem Int Ed 117:807–812

    Article  Google Scholar 

  16. Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Nat Mater 5:987–994

    Article  CAS  Google Scholar 

  17. Wei TY, Chen CH, Chien HC, Lu SY, Hu CC (2010) Adv Mater 22:347–351

    Article  CAS  Google Scholar 

  18. Biswal M, Banerjee A, Deo M, Ogale S (2013) Energy Environ Sci 6:1249–1259

    Article  CAS  Google Scholar 

  19. Huang WT, Zhang H, Huang YQ, Wang WK, Wei SC (2011) Carbon 49:838–843

    Article  CAS  Google Scholar 

  20. Chen WX, Zhang H, Huang YQ, Wang WK (2010) J Mater Chem 20:4773–4775

    Article  CAS  Google Scholar 

  21. Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei BQ (2007) J Phys Chem C 11:7527–7531

    Article  Google Scholar 

  22. He XJ, Ling PH, Yu MX, Wang XT, Zhang XY, Zheng MD (2013) Electrochim Acta 105:635–641

    Article  CAS  Google Scholar 

  23. Zhou L, Cao H, Zhu SQ, Hou LR, Yuan CZ (2015) Green Chem 17:2373–2382

    Article  CAS  Google Scholar 

  24. Guo Y, Shi ZQ, Chen MM, Wang CY (2014) J Power Sources 252:235–243

    Article  CAS  Google Scholar 

  25. Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI, Suárez-García F, Tascón JMD, Lu GQ (2009) J Am Chem Soc 131:5026–5027

    Article  CAS  Google Scholar 

  26. Ding M, Zhao YP, Zhu YY, Zong ZM, Wei XY, Fan X (2014) Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36:2027–2032

    Article  CAS  Google Scholar 

  27. Doskočil L, Grasset L, Válková D, Pekař M (2014) Fuel 134:406–413

    Article  Google Scholar 

  28. Yuan CZ, Chen L, Gao B, Su LH, Zhang XG (2009) J Mater Chem 19:246–252

    Article  CAS  Google Scholar 

  29. Marsh H, Reinoso FR (2006) Activated carbon. Elsevier, Amsterdam

    Google Scholar 

  30. Raymundo-Piñero E, Azaïs P, Cacciaguerra D, Cazorla-Amorós D, Linares-Solano A, Béguin F (2006) Carbon 43:786–795

    Article  Google Scholar 

  31. Wang JC, Kaskel S (2012) J Mater Chem 22:23710–23725

    Article  CAS  Google Scholar 

  32. Świᾳtkowski A (1999) In studies in surface science and catalysis. Ed. Dᾳbrowski, Elsevier, Vol. 120, Part A, P. 69.

  33. Romanos J, Beckner M, Rash T, Firlej L, Kuchta B, Yu P, Suppes G, Wexler C, Pfeifer P (2012) Nanotechnology 23:015401

    Article  CAS  Google Scholar 

  34. Caturla F, Molina-Sabio M, Rodríguez-Reinoso F (1991) Carbon 29:999–1007

    Article  CAS  Google Scholar 

  35. Smisek M, Cerny S (1970) Active carbon: manufacture, properties and applications. Elsevier, Amsterdam

    Google Scholar 

  36. Yuan CZ, Gao B, Shen LF, Yang SD, Hao L, Lu XJ, Zhang F, Zhang LJ, Zhang XG (2011) Nanoscale 3:529–545

    Article  CAS  Google Scholar 

  37. Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC, Yuan WK (2007) Carbon 45:785–796

    Article  CAS  Google Scholar 

  38. Ma YW, Zhao J, Zhang LR, Zhao Y, Fan QL, Li XA (2011) Carbon 49:5292–5297

    Article  CAS  Google Scholar 

  39. Wang ZH, Qie L, Yuan LX, Zhang WX, Hu XL, Huang YH (2013) Carbon 55:328–334

    Article  CAS  Google Scholar 

  40. Li Z, Xu ZW, Wang HL, Ding J, Zahiri B, Holt CMB, Tan XH, Mitlin D (2014) Energy Environ Sci 7:1708–1718

    Article  CAS  Google Scholar 

  41. Ania CO, Khomenko V, Raymundo-Pinero E, Parra JB, Béguin F (2007) Adv Funct Mater 17:1828–1836

    Article  CAS  Google Scholar 

  42. Andreas HA, Conway BE (2006) Electrochim Acta 51:6510–6520

    Article  CAS  Google Scholar 

  43. Zhang JB, Jin LJ, Cheng J, Hu HQ (2013) Carbon 55:221–232

    Article  CAS  Google Scholar 

  44. Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd ed., John Wiley, Inc, New York; Ch. 6, P:233–235.

  45. Yuan CZ, Zhang LH, Hou LR, Lin JD, Pang G (2014) RSC Adv 4:24773–24776

    Article  CAS  Google Scholar 

  46. Pang H, Zhang YZ, Lai WY, Hu Z, Huang W (2015) Nano Energy 15:303–312

    Article  CAS  Google Scholar 

  47. Eliad L, Salitra G, Soffer A, Aurbach D (2001) J Phys Chem B 105:6880–6887

    Article  CAS  Google Scholar 

  48. Ue M (1994) J Electrochem Soc 141:3336–3342

    Article  CAS  Google Scholar 

  49. Paraknowitsch JP, Thomas A (2013) Energy Environ Sci 6:2839–2855

    Article  CAS  Google Scholar 

  50. Li WR, Chen DH, Li Z, Shi YF, Wan Y, Huang JJ, Yang JJ, Zhao DY, Jiang ZY (2007) Electrochem Commun 9:569–573

    Article  CAS  Google Scholar 

  51. Yuan CZ, Zhou L, Zhu SQ, Cao H, Hou LR (2015) J Electrochem Soc 162:A781–A786

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (nos. 51202004, 51572005, 51502003), the Anhui Province Foundation for Distinguished Young Scientists (no. 1508085J09), the Natural Science Foundation of Anhui Province (no. 1508085ME106), and the Foundation for Young Talents in College of Anhui Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linrui Hou, Kwun Nam Hui or Changzhou Yuan.

Electronic supplementary material

ESM 1

(DOCX 1.36 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Chen, Q., Shi, Y. et al. Lignite-derived mesoporous N- and O-enriched carbon sheet: a low-cost promising electrode for high-performance electrochemical capacitors. J Solid State Electrochem 20, 713–723 (2016). https://doi.org/10.1007/s10008-015-3100-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3100-8

Keywords

Navigation