Skip to main content
Log in

Coralloid and hierarchical Co3O4 nanostructures used as supercapacitors with good cycling stability

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Coralloid and hierarchical Co3O4 nanostructures were synthesized by a facile two-step approach composed of room temperature solution-phase synthesis without any surfactant and calcination of precursor. Owing to the unique structural features, the capacitance of Co3O4 could reach up to 591 F g−1 at a current density of 0.5 A g−1. Especially the cycling stability remained about 97 % after 2000 cycles at a current density of 1 A g−1. These results demonstrated that the coralloid and hierarchical Co3O4 were excellent candidates for electrochemical supercapacitor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rai AK, Gim J, Trang Vu T, Ahn D, Cho SJ, Kim J (2014) High rate capability and long cycle stability of Co3O4/CoFe2O4 nanocomposite as an anode material for high-performance secondary lithium ion batteries. J Phys Chem C 118(21):11234–11243

    Article  CAS  Google Scholar 

  2. Liu WW, Li X, Zhu MH, He X (2015) High-performance all-solid state asymmetric supercapacitor based on Co3O4 nanowires and carbon aerogel. J Power Sources 282:179–186

    Article  CAS  Google Scholar 

  3. Ke QQ, Tang CH, Yang ZC, Zheng MR, Mao L, Liu HJ, Wang J (2015) 3D nanostructure of carbon nanotubes decorated Co3O4 nanowire arrays for high performance supercapacitor electrode. Electrochim Acta 163:9–15

    Article  CAS  Google Scholar 

  4. Balasubramanian S, Kamaraj PK (2015) Fabrication of natural polymer assisted mesoporous Co3O4/carbon composites for supercapacitors. Electrochim Acta 168:50–58

    Article  CAS  Google Scholar 

  5. Salunkhe RR, Kamachi Y, Torad NL, Hwang SM, Sun Z, Dou SX, Kim JH, Yamauchi Y (2014) Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J Mater Chem A 2(46):19848–19854

    Article  CAS  Google Scholar 

  6. Salunkhe RR, Lee Y-H, Chang K-H, Li J-M, Simon P, Tang J, Torad NL, Hu C-C, Yamauchi Y (2014) Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications. Chem-a Eur J 20(43):13838–13852

    Article  CAS  Google Scholar 

  7. Torad NL, Salunkhe RR, Li Y, Hamoudi H, Imura M, Sakka Y, Hu C-C, Yamauchi Y (2014) Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem-a Eur J 20(26):7895–7900

    Article  CAS  Google Scholar 

  8. Wang Y, Lei Y, Li J, Gu L, Yuan H, Xiao D (2014) Synthesis of 3D-nanonet hollow structured Co3O4 for high capacity supercapacitor. ACS Appl Mater Interfaces 6(9):6739–6747

    Article  CAS  Google Scholar 

  9. Deori K, Ujjain SK, Sharma RK, Deka S (2013) Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors. ACS Appl Mater Interfaces 5(21):10665–10672

    Article  CAS  Google Scholar 

  10. Zhong J-H, Wang A-L, Li G-R, Wang J-W, Ou Y-N, Tong Y-X (2012) Co3O4/Ni(OH)(2) composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications. J Mater Chem 22(12):5656–5665

    Article  CAS  Google Scholar 

  11. Ramadoss A, Kim SJ (2014) Enhanced supercapacitor performance using hierarchical TiO2 nanorod/Co(OH)2 nanowall array electrodes. Electrochim Acta 136:105–111

    Article  CAS  Google Scholar 

  12. Xu G-L, Li J-T, Huang L, Lin W, Sun S-G (2013) Synthesis of Co3O4 nano-octahedra enclosed by {111} facets and their excellent lithium storage properties as anode material of lithium ion batteries. Nano Energy 2(3):394–402

    Article  CAS  Google Scholar 

  13. Xu J, Gao P, Zhao TS (2012) Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells. Energy Environ Sci 5(1):5333–5339

    Article  CAS  Google Scholar 

  14. Ali GAM, Fouad OA, Makhlouf SA, Yusoff MM, Chong KF (2014) Co3O4/SiO2 nanocomposites for supercapacitor application. J Solid State Electrochem 18(9):2505–2512

    Article  CAS  Google Scholar 

  15. Xia X, Tu J, Zhang Y, Wang X, Gu C, X-b Z, Fan HJ (2012) High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 6(6):5531–5538

    Article  CAS  Google Scholar 

  16. Rakhi RB, Chen W, Hedhili MN, Cha D, Alshareef HN (2014) Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration. ACS Appl Mater Interfaces 6(6):4196–4206

    Article  CAS  Google Scholar 

  17. Zhang JJ, Huang T, Yu AS (2015) Synthesis and effect of electrode heat-treatment on the superior lithium storage performance of Co3O4 nanoparticles. J Power Sources 273:894–903

    Article  CAS  Google Scholar 

  18. Sun H, Liu Y, Yu Y, Ahmad M, Nan D, Zhu J (2014) Mesoporous Co3O4 nanosheets-3D graphene networks hybrid materials for high-performance lithium ion batteries. Electrochim Acta 118:1–9

    Article  Google Scholar 

  19. Han L, Tang P, Zhang L (2014) Hierarchical Co3O4@PPy@MnO2 core-shell-shell nanowire arrays for enhanced electrochemical energy storage. Nano Energy 7:42–51

    Article  CAS  Google Scholar 

  20. Zhang G, Wang T, Yu X, Zhang H, Duan H, Lu B (2013) Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy 2(5):586–594

    Article  CAS  Google Scholar 

  21. Wen Z, Zhu L, Li Y, Zhang Z, Ye Z (2014) Mesoporous Co3O4 nanoneedle arrays for high-performance gas sensor. Sensors Actuators B Chem 203:873–879. doi:10.1016/j.snb.2014.06.124

    Article  CAS  Google Scholar 

  22. Padmanathan N, Selladurai S, Razeeb KM (2015) Ultra-fast rate capability of a symmetric supercapacitor with a hierarchical Co3O4 nanowire/nanoflower hybrid structure in non-aqueous electrolyte. Rsc Adv 5(17):12700–12709

    Article  CAS  Google Scholar 

  23. Zhang X, Zhao Y, Xu C (2014) Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields. Nanoscale 6(7):3638–3646

    Article  CAS  Google Scholar 

  24. Cai D, Huang H, Wang D, Liu B, Wang L, Liu Y, Li Q, Wang T (2014) High-performance supercapacitor electrode based on the unique ZnO@Co3O4 core/shell heterostructures on nickel foam. ACS Appl Mater Interfaces 6(18):15905–15912

    Article  CAS  Google Scholar 

  25. Singh AK, Sarkar D, Khan GG, Mandal K (2014) Designing one dimensional Co-Ni/Co3O4-NiO core/shell nano-heterostructure electrodes for high-performance pseudocapacitor. Appl Phys Lett 104 (13)

  26. Wang B, Zhu T, Wu HB, Xu R, Chen JS, Lou XW (2012) Porous Co3O4 nanowires derived from long Co(CO3)(0.5)(OH)center dot 0.11H(2)O nanowires with improved supercapacitive properties. Nanoscale 4(6):2145–2149

    Article  CAS  Google Scholar 

  27. Mahmoud WE, Al-Agel FA (2011) A novel strategy to synthesize cobalt hydroxide and Co3O4 nanowires. J Phys Chem Solids 72(7):904–907

    Article  CAS  Google Scholar 

  28. Dong Q, Kumada N, Yonesaki Y, Takei T, Kinomura N (2011) Cobalt oxide (Co3O4) nanorings prepared from hexagonal beta-Co(OH)(2) nanosheets. Mater Res Bull 46(8):1156–1162

    Article  CAS  Google Scholar 

  29. Xu J, Gao L, Cao J, Wang W, Chen Z (2010) Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim Acta 56(2):732–736

    Article  CAS  Google Scholar 

  30. Wang X, Ding J, Yao S, Wu X, Feng Q, Wang Z, Geng B (2014) High supercapacitor and adsorption behaviors of flower-like MoS2 nanostructures. J Mater Chem A 2(38):15958–15963

    Article  CAS  Google Scholar 

  31. Zhu T, Chen JS, Lou XW (2010) Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors. J Mater Chem 20(33):7015–7020

    Article  CAS  Google Scholar 

  32. Hou L, Yuan C, Yang L, Shen L, Zhang F, Zhang X (2011) Urchin-like Co3O4 microspherical hierarchical superstructures constructed by one-dimension nanowires toward electrochemical capacitors. Rsc Adv 1(8):1521–1526

    Article  CAS  Google Scholar 

  33. Wu JB, Lin Y, Xia XH, Xu JY, Shi QY (2011) Pseudocapacitive properties of electrodeposited porous nanowall Co3O4 film. Electrochim Acta 56(20):7163–7170

    Article  CAS  Google Scholar 

  34. X-h X, J-p T, Y-j M, Wang X-l, C-d G, X-b Z (2011) Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J Mater Chem 21(25):9319–9325

    Article  Google Scholar 

  35. Wang H-W, Hu Z-A, Chang Y-Q, Chen Y-L, Zhang Z-Y, Yang Y-Y, Wu H-Y (2011) Preparation of reduced graphene oxide/cobalt oxide composites and their enhanced capacitive behaviors by homogeneous incorporation of reduced graphene oxide sheets in cobalt oxide matrix. Mater Chem Phys 130(1–2):672–679

    Article  CAS  Google Scholar 

  36. Deng J, Kang L, Bai G, Li Y, Li P, Liu X, Yang Y, Gao F, Liang W (2014) Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochim Acta 132:127–135

    Article  CAS  Google Scholar 

  37. Liu W, Xu L, Jiang D, Qian J, Liu Q, Yang X, Wang K (2014) Reactable ionic liquid assisted preparation of porous Co3O4 nanostructures with enhanced supercapacitive performance. CrystEngComm 16(12):2395–2403

    Article  CAS  Google Scholar 

  38. Wang X, Yao S, Wu X, Shi Z, Sun H, Que R (2015) High gas-sensor and supercapacitor performance of porous Co3O4ultrathin nanosheets. RSC Adv 5(23):17938–17944

    Article  CAS  Google Scholar 

  39. Tummala R, Guduru RK, Mohanty PS (2012) Nanostructured Co3O4 electrodes for supercapacitor applications from plasma spray technique. J Power Sources 209:44–51

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the Natural Science Foundation of China (No. 21301007) and the Hong Kong Polytechnic University (No. G-UC35) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuhua Wang or Bingang Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 16 kb)

ESM 2

(DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wu, X., Xu, B. et al. Coralloid and hierarchical Co3O4 nanostructures used as supercapacitors with good cycling stability. J Solid State Electrochem 20, 1303–1309 (2016). https://doi.org/10.1007/s10008-016-3125-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3125-7

Keywords

Navigation